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1 Robert Brown’s New Thing

Problem 1.1 (Solution) a) We show the result for R%valued random variables. Let &,7 € R%.

przeesnl () G =eer (G )

<~ lim Eexp [i(¢, X,) +i(n, Yn)] = Eexp[i(&, X) +i(n, Y)]

n—oo

By assumption,

If we take £ =0 and 7 = 0, respectively, we see that
lim Eexp[i(n,Y,)] =Eexp[i{n,Y)] or Y,
n—o0o
lim Eexp[i(¢, Xy)] = Eexp[i(, X)] or X, — X.
n—oo

Since X,, 1Y, we find

Eexp [i(§, X) +i(n,Y)] = lim Eexp[i(¢, Xn) +i(n, Yn)]

n—00

JEI(}OEeXp [Z<€>Xn>] Eexp [Z<77’Yn>]

lim Eexp [(¢, X,)] JLHSO Eexp [i(n, Yn)]

n—oo

= Eexp[i(¢, X)] Eexp[i(n, Y)]

and this shows that X 1 Y.
b) We have

1 almost surely
Xpn=X+—

n n—00

X — X, % x

Yn = 1—Xn =1- l - X almost surely

n n—oo

X,+Y, =1

1-X — v, 51-Xx

almost surely

mE — X, +Y, 51,
A simple direct calculation shows that 1 - X ~ %(50 +01) ~Y. Thus,
X, 52X, YV, 5v~1-X, X,+V,51.
Assume that (X,,Y},) 4 (X,Y). Since X 1Y, we find for the distribution of X +Y":
X +Y ~ $(80+61) * 3(80+ 1) = 3(80 * 8o + 201 * 6o + &1 * 61) = (8o + 261 + 2).

Thus, X +Y 4 09 ~ 1 = lim,(X,, +Y,,) and this shows that we cannot have that
(Xn,Ya) S (X,Y).
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c) If X;, 1Y, and X 1Y, then we have X,, +Y, 4 X +Y: this follows since we have

for all £ € R:
lim EeX(XntYn) = Jim E % e
n—oo n—->oo
= lim Ee%%r lim Ee%™
n—o0o n—>oo

_ X g pfY
2hn [ iEX eigy]

= (XY

A similar (even easier) argument works if (X,,,Y},) LA (X,Y). Then we have
f(w,y) =S
is bounded and continuous, i.e. we get directly

lim B ) 1im B £(X,,Y,) =Ef(X,Y) = EeSX),
n—oo

n—-oo

For a counterexample (if X,, and Y}, are not independent), see part b).

Notice that the independence and d-convergence of the sequences X,,Y, already
implies X 1L Y and the d-convergence of the bivariate sequence (X,,Y;). This is a

consequence of the following

Lemma. Let (X;)ns1 and (Yo )ns1 be sequences of random wvariables (or random
vectors) on the same probability space (2, A, P). If

X, Y, forall nz1 and XnLX and YnLY,
n—oo

n—oo

then (X, Yy) —— (X,Y) and X LY.
n—oo

Proof. Write ¢x,¢y,¢xy for the characteristic functions of X, Y and the pair
(X,Y). By assumption

lim ¢x,(¢) = lim Ee** =Ee™* = ¢x(¢).
n—oo n—oo
A similar statement is true for Y, and Y. For the pair we get, because of independence

n—oo

lim | e%Xn [ eYn

n—oo

lim Ee“%» lim E e
n—oo n—oo

=B B

= ox(§)oy ().

lim 6, v, (€,1)
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Thus, ¢x,.v,(&§n) = h(§,n) = éx(§)dy(n). Since h is continuous at the origin
(&,m) =0 and h(0,0) = 1, we conclude from Lévy’s continuity theorem that h is a
(bivariate) characteristic function and that (X,,Y},) 4 (X,Y). Moreover,

h(&n) = dxy (&n) = ox(§) oy (n)

which shows that X 1 Y. O

Problem 1.2 (Solution) Using the elementary estimate

¢ _1| = U‘ eCdc

we see that the function ¢ - €&t} &, t e R% is locally Lipschitz continuous:

< sup [e"]|2] = |2] ()
lyl<|z]

GHED) _ iles)

) 1| (g t-s)| < el [t - 5| forall &t,5¢RY,
Thus,
Eei(E,Yn) =K [6i<£1Yn_Xn>ei(€7Xn)]

- [(ei(S,Yn—Xn) _ 1)ei(§,Xn)] + B i(EXn)

Since limy,_, o0 IE €/(&%n) = ]Eei(g’X), we are done if we can show that the first term in the
last line of the displayed formula tends to zero. To see this, we use the Lipschitz continuity

of the exponential function. Fix & € R

‘E[ (&, Yn—Xn) _1)6z‘<57Xn>”

< E |(6i<§7Yn—Xn> _ 1)61(§,Xn>

o€ Yn-Xn) _ 1’

= [ 6i<57Yn—Xn) — 1| dIP+f
|Yn—Xn|<8 |Yn—Xn|>d
*)
< olel+ f 2dP
|Yn—Xn|>0

=5|¢|+2 P (|Y, - Xn| > )

ei(EaYn—XTJ _ 1 dIP

n—o00 )

. P
where we used in the last step the fact that X,, - Y;, — 0.

Problem 1.3 (Solution) Recall that Y, LY withY = ¢ a.s., i.e. where Y ~ §, for some constant
c € R. Since the d-limit is trivial, this implies Y;, L Y. This means that both “is this still

true”-questions can be answered in the affirmative.

We will show that (X,,,Y,) 4 (X, c) holds — without assuming anything on the joint
distribution of the random vector (X,,Y,), i.e. we do not make assumption on the corre-
lation structure of X,, and Y,,. Since the maps z » x +y and x — z -y are continuous, we
see that

JEEO]E]C(X”’Y”) =Ef(X,c) VfeCy(RxR)
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implies both
lim Eg(X,Y,) =Eg(Xc) VgeCy(R)

and

lim Eh(X, +Y,) =Eh(X +c) VYheCy(R).

n—oo

This proves (a) and (b).

In order to show that (X,,Y,,) converges in distribution, we use Lévy’s characterization of
distributional convergence, i.e. the pointwise convergence of the characteristic functions.

This means that we take f(z,y) = ¢/€**) for any &, n € R:

Eei(EXn+nYn) _ Eei(§X+’r]c)

< |E ei(an"'WYn) . ei(an“’ﬂC)

+ ‘E pi(EXn+ne) _ [ pi(€X+nc)

<E ei(EXn“?Yn) _ ]Eei(an"'nc)

n ‘Eei(ﬁ)ﬁﬁ—nc) _ ]Eei(EXHyc)

<E ‘einY” _ eiflc‘ T ‘Eeian _ Eeigx‘ '

. . . d
The second expression on the right-hand side converges to zero as X,, — X. For fixed
n we have that y — e is uniformly continuous. Therefore, the first expression on the

right-hand side becomes, with any € > 0 and a suitable choice of § =d(¢) >0

E e — e = B[] — "¢ 1y, _ + B[l — e 1y e
|=E[| | Lgva-cpay] + B[] {[Yu-cl<s)
<2E[Lgy, sy ] + E[el gy, —ces)]
S2P(|Y, —¢|>9) +¢

P -convergence as d,e are fixed
e —> 0.
Mn— 00 Gio

Remark. The direct approach to (a) is possible but relatively ugly. Part (b) has a

relatively simple direct proof:

Fix £ e R.

EeiS(Xn+Yn) _ ]EeigX _ (Eeif(XmYn) _ ]Ee’fX”) + (]Ee’fx" . IEe’fX)

—>0 by d-convergence
mn—00

For the first term on the right we find with the uniform-continuity argument from Prob-

lem 1.1.2 and any € > 0 and suitable 0 = d(¢,§) that

E e"f(Xn‘*'Yn) _ E eian S E

16X (€Y 1)‘

= [efYn - 1|

<e+P(|Yy]>96)

e fixed
—_—> € ——> 0
n—oo e—0

where we use IP-convergence in the penultimate step.



Solution Manual. Last update June 12, 2017

Problem 1.4 (Solution) Let £,7 € R and note that f(z) = € and g(y) = €Y are bounded
and continuous functions. Thus we get
E ) () _ it X giny
=Ef(X)g(Y)
= lim E f(X,)g(Y)
i€Xn ,inY

= lim Ee

n—oo

= fim EAGHG0)

n—oo

and we see that (X,,Y) 2 (X,Y).

Assume now that X = ¢(Y') for some Borel function ¢. Let f € C, and pick g := f o ¢.
Clearly, f o ¢ € By, and we get

Ef(Xn)f(X) =E f(Xn)f(¢(Y))
=E f(Xn)g(Y)
— Ef(X)g(Y)
=Ef(X)f(X)
= f3(X).

Now observe that f e C, = f2€e@, and g =1 € B;. By assumption
E f*(Xn) — B f(X).
n—o0
Thus,

E(|f(X) - f(Xn)]?) =Ef3(X,) - 2E f(Xn) f(X) + E f3(X)
—— Ef*(X) -2E f(X)f(X) + E f*(X) =0,

n—00

. L?
Lo, F(X0) 2 ().
Now fix € >0 and R >0 and set f(z) =—-Rvx A R. Clearly, f € C,. Then

P(X,, - X|>¢€)
<P(X, - X|>€ |X|<R, | Xp|<R)+P(X| > R) +P(|X,| > R)
=P(|f(Xn) = f(X)][> e [X| <R, [Xa| < R) + P(IX] > R) + P(|f(X0)| > R)
<SP(f(Xn) = F(X)][>€) + P(X] > R) + P(|f(Xn)] > R)
<P(f(Xn) = F(X)][>€) + P(X] > R) + P(If(X)| > R/2) + P(|f (Xn) - f(X)]> R/2)

where we used that {|f(X,)| > R} c {|f(X)|> R/2} u {|f(X,) - f(X)| > R/2} because of
the triangle inequality: |f(X,)| <|f(X)|+[f(X) - f(Xy)]

=P(|f(Xn) - f(X)[>€) + P(IX] > R[2) + P(IX]| > R/2) + P(|f(Xn) - f(X)| > R/2)
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= P(f(Xa) - (X)] > €) + 2P(X] > RJ2) + P(f(Xa) - (X)] > R[2)

1 4
< (54 2 ) BOFCO - FOGE) +2P(X] > By2)
6,R fixed and f=freC 2P(|X’ > R/Q) X is a.;. R-valued 0.

n—oo

Problem 1.5 (Solution) Note that Fd; =0 and Vd; = 67 = 1. Thus, ES|,,;) = 0 and V S|y =
|nt].

a) We have, by the central limit theorem (CLT)

Sint| _ Vnt] Sine cwr
N RN =l

where G1 ~N(0,1), hence Gy := vVt Gy ~ N(0,1).

b) Let s <t. Since the §; are iid, we have, S|¢) = S|ns| ~ S|nt|-|ns|, and by the central
limit theorem (CLT)

S[ntjflnsj _V lntJ B LnSJ S[ntjflnsj CLT /t —sG1 ~ Gy_s.
/ VY Ty

If we know that the bivariate random variable (.S|;,s), S|nt|=S|ns|) converges in distri-

bution, we do get G ~ G5+ Gy—s because of Problem 1.1. But this follows again from
the lemma which we prove in part d). This lemma shows that the limit has indepen-
dent coordinates, see also part ¢). This is as close as we can come to Gy — Gs ~ Gy_g,
unless we have a realization of ALL the Gy on a good space. It is Brownian motion

which will achieve just this.

c) We know that the entries of the vector (X3! - Xp' ..., X[ — X', X[") are inde-
pendent (they depend on different blocks of the d; and the §; are iid) and, by the

one-dimensional argument of b) we see that
d
Xi - X, —— Vit - L1 GY ~ Gfk_tk_l forall k=1,...,m
n—oo
where the G]f , k=1,...,m are standard normal random vectors.

By the lemma in part d) we even see that
(X7, = X7 e X = X0 X0) =" (VEGY, - Vi = B 1 GT)
and the G]f , k=1,...,m are independent. Thus, by the second assertion of part b)
(VEHG, o N =t 1 GT) ~ (G, GY )~ (G, Gy, = Gy ).
d) We have the following
Lemma. Let (X;)ns1 and (Yn)ns1 be sequences of random wvariables (or random
vectors) on the same probability space (Q,A,P). If

X, Y, forall nz21 and XnLX and YnLY,

n—oo n—oo

then (Xn,Yn) LN (X,Y) and X 1Y (for suitable versions of the rv’s).
n—oo

10
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Proof. Write ¢x,¢y,¢xy for the characteristic functions of X, Y and the pair
(X,Y). By assumption

lim ¢x, (€) = lim B = Be®X = g5 (¢).
n—oo n—>oo
A similar statement is true for Y,, and Y. For the pair we get, because of independence

lim ¢x, v, (& n) = lim Ee&Xn+n
n—>00 n—>oo

lim Ee'$¥n | eYn

n—00

lim Ee%" lim |

n—»00 n—»00
_ Eez{X EemY

= ox () oy (n).

Thus, ¢x, . v,(&,n) = h(§,n) = ¢x(§)dy(n). Since h is continuous at the origin
(&,m) =0 and h(0,0) = 1, we conclude from Lévy’s continuity theorem that h is a
(bivariate) characteristic function and that (X,,Y},) 4 (X,Y). Moreover,

h(&,n) = oxy (&n) = x(§) oy (n)

which shows that X 1 Y. O

Problem 1.6 (Solution) Necessity is clear. For sufficiency write

B(t)-B(s) 1 [B#)-B(*3") B(3)-B(s)| 1
—m -7 = + = _.ﬁ(X+Y).

By assumption X ~Y, X 1Y and X ~ —(X +Y'). This is already enough to guarantee
that X ~N(0,1), cf. Rényi [8, Chapter VI.5, Theorem 2, pp. 324-325].

Alternative Solution: Fix s <t and define ¢; := s + %(t —-s) for j=0,...,n. Then

Bt] Btj |

,—tglz\/% t—s

G}
By assumption, the random variables (G});, are identically distributed (for all j,n) and
independent (in j). Moreover, E(G’) = 0 and V(G7) = 1. Applying the central limit

theorem (for triangular arrays) we obtain

L d
— Yo 4a
mEG o

where G7 ~N(0,1). Thus, By — Bs ~ N(0,t - s).

11






2 Brownian motion as a Gaussian process

Problem 2.1 (Solution) Let us check first that f(u,v) := g(u)g(v)(1 - sinusinv) is indeed a
probability density. Clearly, f(u,v) > 0. Since g(u) = (27)-1/2 e™’/2 ig even and sinu is
odd, we get

[ f(u,v)dudvz/g(u)du/g(v)dv—[g(u)sinudufg(v)sinvdvz1—0.

Moreover, the density fy(u) of U is

fu) = [ fluv)do=g(w) [ go)dv-g(wysinu [ g(v)sinvdo = g(u).
This, and a analogous argument show that U,V ~ N(0,1).

Let us show that (U,V) is not a normal random variable. Assume that (U, V') is normal,
then U +V ~ N(0,0?), i.e.
[ i€U+V) _ -5 &%0% (*)

On the other hand we calculate with f(u,v) that

EeéU+V) - /f WY £ (4 v) du dv

- (f g (u) du)Q— (f et (u) sinudu)

=€ ( ! f St (e — e ) g(u) du)2

2

2
2
_ 6_52 _ (21 f (ei(§+1)u _ ei(é—l)u)g(u) du)
1
2
o (l (6—§(5+1>2 _ 6—5(5—1)2))
21

et (et e—é(s—l)Q)Q
4
1
- 6_16_52(6_5 - 65)2,
4
and this contradicts (*).

Problem 2.2 (Solution) Let (&1,...,&,) #(0,...,0) and set tg =0. Then we find from (2.12)

DNt Ate) &&= Y (t — 1) (& + +&,)2>0. (2.1)
J=1k=1 j=1T

Equality (= 0) occurs if, and only if, (§; + - +&,)? =0 for all j = 1,...,n. This implies
that & = ... =&, =0.

13
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Abstract alternative: Let (X;).s be a real-valued stochastic process which has a second
moment (such that the covariance is defined!), set u; = E X;. For any finite set S c I we
pick A\s € C, s €S. Then

> Cov(Xs, X)AsAe = Y E((Xy — 1) (X = pue) ) Ashe
s,teS s,teS

= Z (Xs - Ns))‘s(Xt - ,U/t)/\t)
s,teS

S OIEEVRIS Yoy

seS teS

2
)0

Remark: Note that this alternative does not prove that the covariance is strictly positive

=

Z(XS - Ms)/\s

seS

definite. A standard counterexample is to take Xz = X.
Problem 2.3 (Solution) These are direct & straightforward calculations.

Problem 2.4 (Solution) Let e; = (0,...,0,1,0...) € R" be the ith standard unit vector. Then
b\"—-/

ai; = (Ae;, e;) = (Bej, ei) = bi;.

Moreover, for i # j, we get by the symmetry of A and B

(A(ei +€j), e+ €j) = az + ajj + 2b;;
and

(B(e; +ej), e +ej)=by +bjj +2by;
which shows that a;; = b;;. Thus, A= B.
We have
Let A, B € R™"™ be symmetric matrices. If (Az,z) = (Bz,x) for all x ¢ R", then A = B.

Problem 2.5 (Solution) a) X;= 2By is a BM!: scaling property with ¢ = 1/4, cf. 2.12.
b) Y; = By — By is not a BMl, the independent increments is clearly violated:
E(Ya - Y1)Y; = E(Ya, V) - EY)

= B(Byt — Bat)(Bas — Bt) — E(Bayt — By)?
Z) E(Byt - Bat) E(Bat - By) - B(Bay — Bt)?

(B1)

=) -E(B}) =-t+0.

¢) Zy =+/tBj is not a BM', the independent increments property is violated:

E(Z - Z:)Zs = (Vt=/s)VSEB} = (Vt—/5)\/5 % 0.

14
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Problem 2.6 (Solution) We use formula (2.10b).

1 1 ({22 (y-z)?
a) [p(s),B(t)(7,y) = P s exp [_5 (? P )
b) Denote by fB(l) the density of B(l) Then we have

fB(s),Bt) | B(1) (@, y|B(1) = 2)
_ IBs).8y.B(Y (2,9, 2)

fey(2)
~ 1 (2> (y-2)* (2-9)° 2
= TN exp |:—§ (?+ roRpR ):| (27r)1/2exp[5:|.

Thus,

o 1 1(a? (y-2)* o
fB(s),B(t)lB(1)($,y|B(1)—0)—QW oD eXP[—§(;+ PR +1__t)]

Note that

2 2 2 2 2 2 2 2
- t t

G Cit) N (- 20) + e (- 20) + s

s t—s 1-t s(t-s) t t 1-t s(t-s) t t(1-1t)

Therefore,
E(B(s)B(t)[ B(1) =0)
) ff 2y fB(s),8w)1B1) (2, y | B(1) = 0) dr dy
ey " o] i)
o S(t—s)(l—t)[y=-°°y p[ 2 t(1-1)
°° 2
xfmoo:cexp[—% s(tt—s) (x—%y) ]dm dy

:\/s\(/tz—s) m;y
V2m\/t(1-t) Jy=—c0 " T 2t(1-1t)

- %:(1-15) = s(1-1).
c¢) In analogy to part b) we get

FB(t2),B(t2)|B(t1),B(t2) (T, ¥ | B(t1) = u, B(t4) = 2)
_ TB(t).B(t2).B(13).B(t) (4 2, 2)
IB(t1),B(12) (1, 2)
1
_ 2 2 N2 PRy N2
~ 1[ t1(ty —11) :| exp[—l(u +(a: u) +(y x) +(z: Y) ):|><

S on t1(te —t1)(t3 —to)(ts —t3) 2\t to — 11 t3 — 12 tqg — 13
1(u? (z-u)?
xexp|=|—+—=1]|.
2\t ta— 11

Thus,

FB(t2),B(t2)|B(t1),B(t1) (T y | B(t1) = B(ts) = 0)

15
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1
1 — 2 1 2 )2 2
Y S ORI SN VI )
o | t1(ta — t1) (t3 — t2) (tg — t3) 2\to—t1  tg—to ty—t3
Observe that

2?2 (y-=z)? Y ts—t ( to -1 )2 ti—t )
n + = - y| + 2.
to—t1  tg—ta ta—tz3 (ta—t1)(t3—t2) ts —t1 (t3 —t1)(ta — t3)

Therefore, we get (using physicists’ notation: [ dyh(y) := [ h(y) dy for easier read-
ability)

/]ﬂ?y FB(t2),B(t3)|B(11),B(t2) (T, ¥ | B(t1) = B(t4) = 0) dz dy
B 1 00 dyex |:_1 ty— 11 2]
27T(t4—t3) y=—00 yexp 2 (tg—tl)(t4—t3)y
to — 11 ts —11

y o0 1, 2
: V2 (ta —t1)(ts — ta) /{;}mw P [_2 ( t3 -t y) (ta —t1)(t3 —t2)

dzx

y2  ta-t)

Ttz tah
_ -t (ty—t3)(t3 —t1) _ (ta —t1)(ts —t3)
ts—t ta—t ta—t1 ’

Problem 2.7 (Solution) Let s <t¢. Then
C(S,t) = E(Xth)
=E(B} -s)(Bf - t)
=E(B%-5)([B; - Bs + Bs]> - t)
=E(B%-5)(B; - Bs)*+2E(B? - s)By(B; - B;) + E(B? - 5) B2~ E(B% - s)t

(B1

2 E(B? - s)E(B; - Bs)? + 2E(B? - s)B; B(B,; - By) + E(B? - s)B2 ~ E(B? - s)t
=0-(t-s)+2E(B?-5)B,-0+EB!-sEB?-0
=252 =2(s> A t?) = 2(s A )2

Problem 2.8 (Solution) a) We have for s, >0

m(t) =EX, = e *?E B, = 0.
C(S’ t) = E(Xth) = 6_%(S+t) EBeaSBeat = 6_%(5+t)(6043 A eat) — 8_%‘t_5‘.

b) We have
P(X(t1) <z1,. .0, X (1) <zn) = P (B(e®) <2y, ... B(e™) < eo‘t"mxn)

Thus, the density is

X)X (1) (T15 -+ Tn)
_ H eo¢t1€/2fB(em1)7".73(600571)(604751/2x17 o eatn/Zmn)
k=1

16
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“1/2

n n

_ H eatk/2(27_‘,)—n/2 (H (eatk — etk )) 6_% ZZ=1(eatklzxk_eatk,l/ka_l)2/(6atk —eOtk-1)
k=1 k=1

“1/2
= (QW)‘”/Q (ﬁ(l _ e—a(tk—tk—l))) o3 Tioy (wme R0 Ry 1)2 ) (1-e*(htk-1))
k=1

(we use the convention ty = —oo and zg = 0).

Remark: the form of the density shows that the Ornstein—Uhlenbeck is strictly stationary,
ie.
(X(t1+h),..., X(tn+h)~(X(t1),...,X(tn)) Vh>0.

Problem 2.9 (Solution) “=" Assume that we have (B1). Observe that the family of sets

0(Buyy,---,Bu,)

0<uy < Sun<s, n2l

is a n-stable family. This means that it is enough to show that
B, - Bs 1L (By,,...,By,) forall t>s>0.
By (B1) we know that

Bt_Bs i (BupBuz _BUN"‘?Bu _Bun-l)

n

and so
100 0 By, By,
1 0|l Bu, - By, Bu,
Bi-Bsu|1 1 0| Bus—Bu, |=| Bus
Do 0 : :
11 1 1)\B,, - Bu,_, B,
“” Let 0=ty <t; <tp<...<tp<oo,n>1. Then we find for all &,...,&, € R

E (ei Yr1{ér, B(tk)_B(tk—l») -k (ei(En, B(tn)=B(tn-1)) , oi Y€k, B(tk)-B(tg-1)) )

Jt,_, mble., hence WB(tn)-B(tn-1)
=K (ei(in, B(tn)_B(tn—l))) - (ez' ZZ;ll(gk, B(tk)—B(tk,l)))

- ﬁ E (ei(&m B(tk)_B(tk—ln)‘
k=1
This shows (B1).

Problem 2.10 (Solution) Reflection invariance of BM, cf. 2.8, shows
T,=inf{s20: Bg=a} ~inf{s>20: -Bs=a} =inf{s >0 : By=-a} =7_,.
The scaling property 2.12 of BM shows for ¢ = 1/a?
7, =inf{s>0: By =a} ~inf{s>0: aBy/,2 = a}
=inf{a®r >0 : aB, = a}

=a?inf{r>0: B, =1} = a’n.

17
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Problem 2.11 (Solution) a) Not stationary:

EW? =C(t,t) = E(B? - t)? = E(B} - 2tB? + t*) = 3t* - 2t + t* = 2> # const.

b) Stationary. We have E X; = 0 and

EX.X, = 6—a(t+s)/2 E Boas Byat = e—a(t+s)/2(6as A eat) _ e—a\t—s\/Z’

i.e. it is stationary with g(r) = e=@"l/2,

c) Stationary. We have EY; = 0. Let s <t. Then we use IE BsB; = s At to get

EY,Y; = E(Bssn — Bs)(Bien — By)
= Bsyp Biyn — £ Bsyp Bt — 2 BsByyp + 16 Bs By
=(s+h)A({t+h)—(s+h)at—=sAn(t+h)+snt

if t>s+h < h<t-s

il

=(s+h)-(s+h)At=
h-(t-s), if t<s+h < h>t-s.

Swapping the roles of s and ¢ finally gives: the process is stationary with g(t) =
(h=[t)* = (h=t]) v 0.

d) Not stationary. Note that

EZ} =E B2 = ¢ # const.

Problem 2.12 (Solution) Clearly, ¢ — W} is continuous for ¢ # 1. If ¢ = 1 we get
l}Tr?Wt(w) =Wi(w) = B1(w)
and
ltlﬁl Wi(w) = Bi(w) - 1}{{”51#(“’) - B1(w) = Bi(w);
this proves continuity for ¢ = 1.

Let us check that W is a Gaussian process with EW; = 0 and EW W, = s At. By
Corollary 2.7, W is a BM.

Pickn>2land tg=0<t1<...<ty.

If ¢, < 1, there is nothing to show since (B¢)¢e[o,1] is a BM.
Assume that ¢, > 1. Then we have

By
Wil (1 & 0 0 - 0 -1

Bl/h
Wl 110 2 0« 0o 1™
: 0 i3 :
wi,] \1 0 0 0 -« t, -1 Puje,

B1

18
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and since
Bl I (Bl/tlv s 761/tnaﬁ1)T
are both Gaussian, we see that (W;,,..., Wy, ) is Gaussian.

Further, let £ > 1 and 1 <¢; <t;:

EWt = EBl +tE,31/t —Eﬂl =0
E Wy, Wy, = E(B1 + tiB1yy, — B1)(B1+ By, — B1)
=1+ttt — bty —tit; + L=t =t; Aty

Assumethat0<t1<...<tk<1<tk+1<...<tn. Then we have

B
10 "
Wi, 0 0 .
Wi, '
B
: 0 0 1 t
= By
Wi, 1 tger O - 0 -1
. ’Bl/tk+1
: 1 0  tpie 0 -1 )
Wi, oo : 3 '
10 t, -1 )| "
6j1
Since
(Bt17 cee 7BtkyBl) 1L (/Bl/tk+1’ <o 761/tn761)
are Gaussian vectors, (Wy,,..., Wy, ) is also Gaussian and we find
EW,=0
EWtthj = EBti(Bl +tj/81/tj -B1)=ti=t;A t;
for i <k <j.

Problem 2.13 (Solution) The process X (t) = B(e!') has no memory since (cf. Problem 2.9)
o(B(s) : s<e®) Lo(B(s)-B(e) : s2e%)
and, therefore,
o(X(t):t<a)=0(B(s): 1<s<e?) Lo(B(e"™®)-B(e) : s20)

=o(X(t+a)-X(a): t>0).

The process X (t) := e?B(e!) is not memoryless. For example, X (a +a) — X (a) is not
independent of X (a):

E(X(2a) - X(a)X(a)=E (efaB(eQ“) - 67“/2B(ea))67“/2B(e“) = 30260 _ 7% 4,

19
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Problem 2.14 (Solution) The process W; = B,_t — B,,0 <t < a clearly satisfies (B0) and (B4).

For 0 < s<t<a we find
Wt - Ws = Ba—t - Ba—s ~ Ba—s - Ba—t ~ Bt—s ~ N(O7 (t - S) ld)

and this shows (B2) and (B3).

For 0=ty <t; <...<t, <a we have
Wt]' - Wtj_l = Ba—tj - B(l—tj_l ~ B(l—tj_l - Ba—t]' vj
and this proves that W inherits (B1) from B.

Problem 2.15 (Solution) We know from Paragraph 2.13 that

B
limtB(1/t) =0 = lim (5)

stoo S

=0 a.s.

Moreover,
2
E(@) 2L

S S S

i.e. we get also convergence in mean square.

Remark: a direct proof of the SLLN is a bit more tricky. Of course we have by the classical

SLLN that i
B, Xi1(Bj-Bj1) sLiN
= = 0 as.
n n n—00

But then we have to make sure that Bs/s converges. This can be done in the following

way: fix s >0. Then there is a unique interval (n,n + 1] such that s € (n,n + 1]. Thus,

Bs

S

Bs - Bn+1
S

n+l _ SuPngseni |Bs — Bp1] Lt 1 ‘Bn
n n

< ’

’Bn+1
+
n+1

s n
and we have to show that the expression with the sup tends to zero. This can be done
by showing, e.g., that the L2-limit of this expression goes to zero (using the reflection

principle) and with a subsequence argument.

Problem 2.16 (Solution) Set

Y= U o(B(t) : teld)
Jc[0,00), J countable

Clearly,

Uo(B)cXco(B:t20) LgB (*)

t>0
The first inclusion follows from the fact that each B; is measurable with respect to X.

Let us show that ¥ is a o-algebra. Obviously,

geY and FeY = FeX.

20
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Let (An)n c 3. Then, for every n there is a countable set J,, such that A, e o(B(t) : t e
Jpn). Since J = U, J, is still countable we see that A, € o(B(t) : t € J) for all n. Since

the latter family is a o-algebra, we find

JA,eo(B(t) :teJ)cX.

Since Uy 0(By) ¢ 3, we get—mnote: F2 is, by definition, the smallest o-algebra for which
all B; are measurable—that
?DB; cX.

This shows that ¥ = F52 .

Problem 2.17 (Solution) Assume that the indices ti,...,t,, and s1,...,s, are given. Let

{ur,...,up}ti={s1,...,spu{ts,..., tn}. By assumption,
(X(u1),..., X (up)) L (Y(ur),...,Y (up)).

Thus, we may thin out the indices on each side without endangering independence:

{s1,....sn} c{ur,...,up} and {t1,...,tm} c {u1,...,upy}, and so

(X(s1),--, X(sn)) L (Y(t1)y..., Y (tm))-

Problem 2.18 (Solution) Since F; ¢ ¥, and G; ¢ Go it is clear that
Foo L Goo =— H:tll_gt.
Conversely, since (F¢)¢ 0 and (G¢)es0 are filtrations we find

VFEe|JF, VGelJG:, 3Fto: FeFy, GeGy.

t0 t0
By assumption: P(FnG) =P(F)P(G). Thus,
U .rft 1 U 9,5.
t0 t0

Since the families Usso F¢ and U G¢ are n-stable (use again the argument that we have
filtrations to find for F, F' € U0 F; some tg with F, F' € F;, etc.), the o-algebras generated
by these families are independent:
Foo :U(Ugt) JJ_U(Ugt) = Jeo-
£50 £50
Problem 2.19 (Solution) Let U € R¥? be an orthogonal matrix: UUT = id and set X; := UB;
for a BM? (B;)s0. Then

E (exp

) = ]E(exp ll 3 (&, UB(t)) - UB(tj—1)>])
j=1

zi(g], X(t5) - X(t;1))

21
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(exp[ il U'¢j, B(t)) —B(tjl))])
i

= exp %Z(t -t U'&, UTE)
L =1
= exp %Z tj—1)|§j|2]-

(Observe (UT¢;, UTE;) = (UUTES, &) = (&5, &) = 1€;%). The claim follows.

Problem 2.20 (Solution) Note that the coordinate processes b and 3 are independent BM*.
a) Since b Il B, the process Wy = (b + B¢) /\/§ is a Gaussian process with continuous

sample paths. We determine its mean and covariance functions:

1
EWt= E(Ebt-kEﬁt) =0

Cov(Ws, Wy) = E(W,Wy)
= (b, + 5,) (b + o)
= (b + B+ Ebyfy + B,
= %(S/\t+0+0+8/\t> =sAt
where we used that, by independence, Eb,3, = Eb, IE 5, = 0. Now the claim follows
from Corollary 2.7.
b) The process X; = (W, 5;) has the following properties
e W and 8 are BM!

o E(Wib) =272 E(by+8)B =27 2(EbEB+ES?) =t/v/2+0, i.e. W and j are
NOT independent.

This means that X is not a BM?2, as its coordinates are not independent.
The process Y; can be written as
1 bt“’ﬂt U bt B 1 1 1 bt
V2 \b - B B V2 \1 -1\ '
Clearly, UUT = id, i.e. Problem 2.19 shows that (Y;)s0 is a BMZ.

Problem 2.21 (Solution) Observe that b I 3 since B is a BM?. Since

EX;=0
Cov(X¢, Xs) = E X X,
= E(A\bs + uBs) (Aby + 113¢)

= N Ebgby + A EbyBy + AuE b B + 14 BB
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=N Ebgb + \uEb,E B + \uE b E B, + 2 E BBy
=N (sAt) +0+0+p2sat= (AN + %) (sAt).
Thus, by Corollary 2.7, X is a BM! if, and only if, A% + p? = 1.
Problem 2.22 (Solution) X; = (b, 8s—t — 8¢), 0 < t < s, is NOT a Brownian motion: X, =
(0,55) # (0,0).
On the other hand, Y; = (b, Bs—t — Bs), 0 < t < s, IS a Brownian motion, since b; and

Bs_t — B are independent BM!, cf. Time inversion 2.11 and Theorem 2.16.

Problem 2.23 (Solution) We have

T cosa sina) [ b
Wy=UDB, = .
—sina cosa ) \ 5

The matrix U is a rotation, hence orthogonal and we see from Problem 2.19 that W is a

Brownian motion.

Generalization: take U orthogonal.

Problem 2.24 (Solution) If G ~ N(0, Q) then Q is the covariance matrix, i.e. Cov(G7, G¥) = Ujk-

Thus, we get for s <t

Cov (X7, X[) = B(X!X})
=EX](X] - X5) +B(XIXY)
= EXIB(X[ - XF) + sq;n

= (S N t)ij.
The characteristic function is

E 66X - R ei(BT6B) _ o3BT _ -5 (6557€)

and the transition probability is, if ) is non-degenerate,

fola) = exp (% (x,Qx)).

1
v (27t)det Q

If Q is degenerate, there is an orthogonal matrix U € R™" such that

UX,=(Y,..., Yk o0,...,0)7
—
n—k
where k < n is the rank of ). The k-dimensional vector has a nondegenerate normal

distribution in R*.
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3 Constructions of Brownian Motion

Problem 3.1 (Solution) The partial sums
N-1
Wi (t,w) = 30 Gu(w)Su(t), te[0,1],
n=0

converge as N — oo P-a.s. uniformly for ¢ towards B(t,w),t € [0,1]—cf. Problem 3.2.

Therefore, the random variables

1 N-1 1 Poas 1
f Wy(t)dt= > Gy f Sp(t)dt —= X = f B(t) dt.
0 for 0 N—oo 0

This shows that fol Wi (t) dt is the sum of independent N(0, 1)-random variables, hence

itself normal and so is its limit X.

From the definition of the Schauder functions (cf. Figure 3.2) we find

" So(t) dt = &
t)dt = —
| sotyat =5

1 1 —§j ; ‘

A SQjJrk(t)dt:ZQ 2/ k=0,1,...,27 -1, 5>0.
and this shows
1 1 12 21-1 3.
[ W2n+1(t) dt = —Go—i——Z Z 2_§]G2j+l'
0 2 4j:0 =0

Consequently, since the G are iid N(0,1) random variables,

1
]Efo Woynet (£) dt = 0,

[N}
<.
|

—

+

M=
2o
€

<

Il
[e=]
~

I
o

1
V A W2n+1 (t) dt =

+
sl= Sl=

M=
N
®

<
Il
=]

1- 2—2(n+1)

+
—
N ml.—\
—
|
—_

N N e
| —

N}
| —

[OUNITEN

+ .
1 3

n—oo

(@)

This means that

~N(0,27)

where the series converges PP-a.s. and in mean square, and X ~ N(0, %)
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Problem 3.2 (Solution) a) From the definition of the Schauder functions S, (t), n >0, t €

[0,1], we find

0<S,(t) Vn, t
. , . 1 .
Soi i (1) < Syypi (2K +1)/207) = 27912 j2i+1 = 5 2712 ikt
27-1 1 .
> Syin(t) < 5 97312 (disjoint supports!)
k=0

By assumption,
3C >0, 3ee(0,1), VYn:la,|<C n.
Thus, we find
oo 27-1

2. lanlSn(t) <laol + 3 Y7 lagi klSas k(1)
n=0

7=0 k=0
oo 29-1 1
<laol+ 3 D0 C-(277) Say44(2)

§=0 k=0

o0 A 1 .
<lag)+ Y €20+ 297 ¢ oo,
j=0 2

(The series is convergent since € < 1/2).
This shows that Y77 anS,(t) converges absolutely and uniformly for ¢ € [0, 1].

b) For C > /2 we find from

—— 2 1 21

that the following series converges:
P (|Gn| > \/logn) < 00.
n=1
By the Borel-Cantelli Lemma we find that G, (w) = O(\/log n) for almost all w, thus

Gy (w) = 0(nf) for any €€ (0,1/2).

From part a) we know that the series Y72 Gp(w)Sn(t) converges a.s. uniformly for

te[0,1].

Problem 3.3 (Solution) Set | /], := (E|f[P)""

26

Solution 1: We observe that the space LP(Q,A,P;S) = {X : X € 5,[d(X,0)|, < oo} is

complete and that the condition stated in the problem just says that (X,)y is a Cauchy
sequence in the space LP(Q, A, IP;S). A good reference for this is, for example, the mono-
graph by F. Treves [13, Chapter 46]. You will find the ‘pedestrian’ approach as Solution
2 below.
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Solution 2: By assumption

VE>0 3N, >1: sup |d(Xn,, Xm)]p,<27".

m}Nk

Without loss of generality we can assume that N < Ng,1. In particular
_k Vi>k I-1 _j 2
(XN X lp <270 = [d(Xn, Xv)lp < 32277 < o
j=k

Fix m > 1. Then we see that
(X, Xon) = (X, Xy < 1K Xy ——0.

This means that that (d(Xn,,Xm))ks0 is a Cauchy sequence in LP(PP;R). By the com-
pleteness of the space LP(IP;R) there is some f,, € LP(IP;R) such that

in LP

and, for a subsequence (ny) c (Ng)x we find

almost surely

d( X, Xm) fm.

k;—><>o

The subsequence n; may also depend on m. Since (ng(m))y is still a subsequence of
(Ng), we still have d(X,,

(ng(m + 1))k © (ng(m))x such that d(X,, (ms1)s Xm+1) = fme1 a.s. Iterating this we see

k(m),Xerl) — fm+1 in LP, hence we can find a subsequence

that we can assume that (ng), does not depend on m.
In particular, we have almost surely
Ve>0 3L=L(e)>1 Vk>L:|d(X,,,Xn)- fml<e

Moreover,

Hm || f]p = lim || im d(Xp,, Xm)|p < lim lim [d(Xp, , Xm)|p

m—>oo m—oo " M= 1,

< lim sup [[d(Xp,, Xm)]p = 0.
k—o0 m2ny,
Thus, f, = 0in L? and, for a subsequence my we get
Ve>0 3K =K(e)>1 Vr>K :|fm|<e

Therefore,

d( Xy Xny) € d( Xy, Xim,.) + d( Xy, Xom,.)
<Nd( Xy Xomy ) = frnel +1d (X, Xony ) = frnnl + 2 fin, |-

Fix € > 0 and pick r > K. Then let k,] - oo. This gives

d(Xnk’an) < |d(Xnk’er) - fm'r| + |d(Xnk7er) - fmrl +2€ < 46 Vk7l 2 L((f)
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Since S is complete, this proves that (X,, )xs0 converges to some X € .S almost surely.

Remark: If we replace the condition of the Problem by
lim E (Sup dP (X, Xm)) =0
n—>00 m2n
things become MUCH simpler:
This condition says that the sequence dy, := sup,,, d’(X,, X,,) converges in LP(IP;R) to

zero. Hence there is a subsequence (ny )y such that

lim sup d(X,,,Xm)=0

k— o0 mny,

almost surely. This shows that d(X,, , Xy,) - 0 as k,l — oo, i.e. we find by the complete-
ness of the space S that X, — X.

Problem 3.4 (Solution) Fix n>1, 0< ¢ <...<t, and Borel sets Ay,...,A,. By assumption,

we know that
P(X;=Y)=1 Vi>0 = IP(Xt].:Y;jjzl,...,n):IP(ﬁ{th:Ytj}):l.
i
Thus,
P(Q{th € Aj}) =P Q{th € Aj}mj(:ﬁl{xtj = Ytj})
p(( 0, eao - )

B[ e (x, 7))

p(A )

Problem 3.5 (Solution) indistinguishable = modification:

28

P(X;=Y;Vt>0)=1 — Vt>0: P(X,=Y;) = 1.

modification = equivalent: see the previous Problem 3.4

Now assume that [ is countable or t » X;,t — Y; are (left- or right-)continuous.

modification == indistinquishable: By assumption, P(X; # Y;) = 0 for any ¢ € I. Let

D c I be any countable dense subset. Then

IP(U{quth})s Y P(Xq#Y,)=0

qeD qeD
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which means that P(X, = Y,Vq e D) = 1. If I is countable, we are done. In the other case
we have, by the density of D,

P(X;=Y:Vtel)= ]P(ll%mX —hmY Vte[)>IP(X Y,VqeD)=1.
>

equivalent =~ modification: To see this let (B;)0 and (Wy)i0 be two independent

one-dimensional Brownian motions defined on the same probability space. Clearly,
these processes have the same finite-dimensional distributions, i.e. they are equivalent.

On the other hand, for any ¢ >0
P(B;, = W,) = [ P(B; = y) P(W, € dy) = [ 0 P(W,; e dy) = 0.

Problem 3.6 (Solution) Since (B;)geqn[0,00) is uniformly continuous, there exists a unique pro-

cess (Bt)0 such that By = lim,+ B, and ¢ — B; is continuous.

We use the characterization from Lemma 2.14. Its proof shows that we can derive (2.17)

exp( i fg,qu _qu—1> +i<€07qu>)] = exp( Z |§J| (g; - Qj—l))

25z
on the basis of (B0)-(B3) for (By)geqn[0,00) @0d G0, - - -, Gn € Q N [0, 00).

Now set o9 = o = 0 and pick ¢1,...,t, € R and approximate each t; by a rational sequence
q](.k), k> 1. Since (2.17) holds for q](.k),j =0,...,n and every k > 0, we can easily perform
the limit & - oo on both sides (on the left we use dominated convergence!) since B; is

continuous.

This proves (2.17) for (By)s0, and since (B¢ )0 has continuous paths, Lemma 2.14 proves
that (Bt)t>0 is a BMl

Problem 3.7 (Solution) The joint density of (W (o), W (t), W (1)) is

o1 1 1[(x1-2)? (v-mz0)% 22
Jeoaar (@0, 2,21) = 5, N CEDIED eXp( 2[ -t | ity t

while the joint density of (W (tg), W (t1)) is

1 (.%'1 - .%'0)2 g
ftot: (0, @ (——[—+— .
to tl( 0 1) (27T) /—(tl — to)to tl _ t() t()
The conditional density of W(t) given (W (tg), W (t1)) is
ft|to,t1(x|x1>x2)

_ ft07t7t1 (x(]v xz, xl)
fto,tl (ﬂ?o,ﬂ?l)

1] (z1-=)? (azfmo)2 + x_g
(277)5/2 \/(tl t)(t to)to 2 ti-t t—to to
exXp

z1-x0)2 | T2
(—%[&; )

1

(2 ) \/(tl to)to
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_ 1 (ti-to) (_1[(961—1‘)2 . (z—x0)* (961—&70)2])
Var \ (-0t -t) -t | t-fg  ti-to

2
_ 1 (h-to) (_1 [(t—to)(xl—x)2+(t1—t)(x—x0)2 ) (1:1—1;0)2])
Var \ (t - t)(t ~t) 2 (t1—t)(t—to) t1 — to

Now consider the argument in the square brackets [---] of the exp-function

[(t—to)(l‘l —2)?+ (- t)(z-20)?  (m1 —900)2]
(t1=1)(t-to) t1 —to

~ (hi-to) t-to t —t (i -t)(t-to)
(-t (t-to) [tl — 1o (=) + t1—tp (2 = 20)" - (t1—t0)? (1;1—:130)2]
_ (t-t) [(t—to tl—t)x2+(t—to _(tl—t)(t—to))xz
(-t (t-to)[\ti—to  t1-to t1 —to (t1 —t0)? !

+(t1—t ~ (tl—t)(t—to)) 2

t1—to (t1—t0)? "o

t—t t —t (t1 - t)(t—to)
i T1T — ZH TTo + 2W 131330]
(t1—to) [ 2, (t=t0)> o (t1-1)?* ,

-2

"~ (- t)(t-to) (t1 —to)? r (t1—t0)? "o

t—t t1—t t1—-t)(t—-t
-2 0371:1:—2 L xx0+2w:vx]
t —to t, —to (t, - to)
(t1 - to) [x t—tox tl_txr
= - 1= 0
(t1=t)(t-to) t1 —to t1 —to

(t1 —to) [x_(t—to et 0)]2.

= 1+ z
(t1 —t)(t - to) ti—to = ti—to
Set
t1—t)(t—-t t—1 t1—t
p0Ut) it et
(t1 —to) t —to t —to

then our calculation shows that

1 (z—m)?
ft|t0,t1(x|x17x2)_ \/%0_ exp( 20_2 )
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4 The Canonical Model

Problem 4.1 (Solution) Let F': R — [0, 1] be a distribution function. We begin with a general

lemma: F' has a unique generalized monotone increasing right-continuous inverse:
F Y (u) = G(u) = inf{z : F(z)>u}
[ =sup{z : F(z) < u}]
We have F(G(u)) =u if F(t) is continuous in t = G(u), otherwise, F(G(u)) > u.

Indeed: For those t where F' is strictly increasing and continuous, there is nothing to show.

Let us look at the two problem cases: F' jumps and F' is flat.

F(t) G(u)

Yy v v v Y v Y vV v

G(u) G(v-) G(v) G(w) t u

Figure 4.1: An illustration of the problem cases

If F(t) jumps, we have G(w) = G(w*) = G(w™) and if F(¢) is flat, we take the right
endpoint of the ‘flatness interval’ [G(v—),G(v)] to define G (this leads to right-continuity
of G)

a) Let (Q,A,P)=([0,1],B[0,1],du) (du stands for Lebesgue measure) and define X =
G (G = F™! as before). Then

PHweQ: X(w)<x})
=A{ue[0,1] : G(u) < x})

(the discontinuities of F' are countable, i.e. a Lebesgue null set)
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“A({te[0,1] s t< F()})
- A([0,F(x)]) = F(a).

Measurability is clear because of monotonicity.

b) Use the product construction and part a). To be precise, we do the construction for
two random variables. Let X : Q - R and Y : Q' - R be two iid copies. We define
on the product space

(QxQ A A PxP)
the new random variables &(w,w’) := X (w) and n(w,w") := Y (w’). Then we have
e £.7 live on the same probability space

b fNXaTI“Y

PxP'(€ e A) = PxP/({(w,w) € Qx Y : §(w,w) € A})
=PxP'({(w,w) e xQ : X(w)eA})
=PxP'({weQ: X(w)eA}xQ)

“P({weQ: X(w) e A})
=P(X eA).
and a similar argument works for 7.
® Ul
PxP'(¢eAneB)=PxP'({(w,w)eQxQ : {(w,0') € A,n(w,w") € B})
=PxP'({(w,w)e2xQ : X(w)eAY (') eB})
=PxP'({we: X(w)eA}x{weQ : Y(w)eB})
“P({we®: X(w) e AP ({weQ : V(') € BY)
=P(XeA)P(Y € B)
=PxP'(£c A)PxP'(neB)
The same type of argument works for arbitrary products, since independence is
always defined for any finite-dimensional subfamily. In the infinite case, we have
to invoke the theorem on the existence of infinite product measures (which are

constructed via their finite marginals) and which can be seen as a particular case

of Kolmogorov’s theorem, cf. Theorem 4.8 and Theorem A.2 in the appendix.

¢) The statements are the same if one uses the same construction as above. A difficulty
is to identify a multidimensional distribution function F'(x). Roughly speaking, these

are functions of the form
F(2) =P (X € (~00,21] x -+ x (~00, 2]

where X = (X1,...,X,,) and z = (21,...,2,), i.e. x is the ‘upper right’ endpoint of

an infinite rectancle. An abstract characterisation is the following
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F:R" - [0,1]

xj ~ F(x) is monotone increasing

xj — F(z) is right continuous

F(z) =0 if at least one entry x; = —oo

F(z) =1 if all entries z; = +00

Z(—1)22=1 6’“F(elal +(1-€1)by, ..., €nan+ (1—6n)bn) > 0 where —oco < a; < bj < 00

and where the outer sum runs over all tuples (e1,...,€,) € {0,1}"
The last property is equivalent to
o AVAMF(@)>0 Vhi,... hy >0 where AV F(2) = F(z + hey) - F(z) and

e is the kth standard unit vector of R".

In principle we can construct such a multidimensional F' from its marginals using

the theory of copulas, in particular, Sklar’s theorem etc. etc. etc.

Another way would be to take (2, A,P) = (R"™, B(R"™), u) where p is the probability
measure induced by F'(z). Then the random variables X,, are just the identity maps!

The independent copies are then obtained by the usual product construction.

Problem 4.2 (Solution) Step 1: Let us first show that P(lims; X5 exists) < 1.

Since X, 1L Xg and X, ~ —-X; we get
Xy = X5~ Xo + X~ N(0,s+7) ~/s+7rN(0,1).

Thus,

€ €
P(|X, - X5 >€) = IP(|X1| > \/m) e ]P(|X1| T

This proves that X is not a Cauchy sequence in probability, i. e. it does not even converge

) 0.

in probability towards a limit, so a.e. convergence is impossible.

In fact we have

{w :lim X¢(w) does not exist} > { sup | Xs — X, | > 0}
st k=1 © s,re[t—1/k,t+1/k]

and so we find with the above calculation

€
P ( lim X does not exist ) > lim P sup | Xs - X[ >0) 2P (| X1]> —
( s—t 5 ) k (S,TE[t—l/k,t+1/k] s T ) ( A /2t)

This shows, in particular that for any sequence t,, — ¢t we have

IP( lim X;, exists) <g<1l.

n—oo
where ¢ = ¢(t) (but independent of the sequence).

Step 2: Fix t > 0, fix a sequence (t,), with t, - ¢, and set

A={weQ: lin%Xs(w) exists} and A(t,)={weQ: lim X; (w) exists}.
S— n—oo
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Clearly, A c A(t,) for any such sequence. Moreover, take two sequences ( Sy, )n, (tn)n such

that s, - ¢ and t,, - t and which have no points in common; then we get by independence
and step 1

(X, Xogs Xoy o) L (Xey, Xogy Xy ..) = A(tn) L A(sy)
and so, P(A) < P(A(sn) n A(tn)) = P(A(sn)) P(A(t)) = ¢2.

By Step 1, ¢ < 1. Since there are infinitely many sequences having all no points in common,
we get 0 < P(A) <limy_e0 ¢* = 0.



5 Brownian Motion as a Martingale

Problem 5.1 (Solution) a) We have
FB co(o(X), FP)=0(X,Bs : s<t) = F,.

Let s < t. Then o(B; - By), 32 and ¢(X) are independent, thus o(B; — By) is
independent of ¢(c(X),FB) = F,. This shows that FZ is an admissible filtration for
(Bt)t0-

b) Set N:={N : 3M € A such that N c M,P(M) =0}. Then we have
B B e
Foco(F7,N)=5F,.
From measure theory we know that (2, A,IP) can be completed to (22, A*,P*) where

A*={AUN : Ae A N e N},
P*(A*):=P(A) for A"=AUNeA".

We find for all Ae B(R?), FeF,, NeN

P*({Bi-Bse A}n(FUN))=P*(({B,-Bs e A}nF)u({B;-Bs € A}nN))
A N
=P({B;-Bse A}nF)
=P(B;- B, € A)P(F)
=P*(B,- B, € A)P*(FuUN).

Therefore ?‘“F is admissible.

Problem 5.2 (Solution) Let ¢ =ty <...<t,, and consider the random variables
B(tl) - B(to)a s 7B(tn) - B(tn—l)
Using the argument of Problem 2.9 we see for any F € &,

E (ei o1 (s B(tk)_B(tk—l»]lF) -E (ei(fru B(tn)=B(tn-1)) , i ot €k B(tk)_B(tk—l»]lF )

Ft,_; mble., hence WB(tn)-B(tn-1)
I (€i<5n, B(tn)—B(tM))) T (ei SRt (Ens B(tw—B(tkfm]lF)
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“[1E (ef6r POO-PE)) B .
k=1

This shows that the increments are independent among themselves (use F' = Q) and
that they are all together independent of F; (use the above calculation and the fact that
the increments are among themselves independent to combine again the [T} under the

expected value)
Thus,
Fy Lo(B(ty) - B(ty-1) 1 k=1,...,n)

Therefore the statement is implied by

Fouo U O'(B(tk)—B(t) : k:zl,...,n).
teti< <t

Problem 5.3 (Solution) a) i) E|X;| < oo, since the expectation does not depend on the
filtration.
ii) Xy is ¥y measurable and F; ¢ F;. Thus X; is F; measurable.

iii) Let N denote the set of all sets which are subsets of P-null sets. Denote by
P* the measure of the completion of (2, A,P) (compare with the solution to
Exercise 5.1.b)).

Let t > s. For all F* € ] there exist F' € F5, N € N such that F* = FuUN and

[ XSdIP*:fXSdIP:thdIP:f X,dP*.
F* F F F*

Since F* is arbitrary this implies that E(X;|Fy) = X;.
b) 1) E[Yy]=E[X,| < co.

ii) Note that {X; # Y;}, its complement and any of its subsets is in F;. Let B €
B(R?). Then we get

(Yie B} = ({X; e B} n{X; # V;})U{Y; e B, X; # Y;} .
—_—
eFy eIy eFy

iii) Similar to part a-iii). For each F™* € ¥ we get
f Y,dP* = f X,dp* 2 f X, dP* = f Y, dP*,
F* F* F* F*
ie. B(Y;|T7) =Y.
Problem 5.4 (Solution) Let s <t and pick s, | s such that s < s, <t. Then
sub-MG

(X | 00) <= BX (1) | F0,) > X (sn) 77 X(s4) 27 X(s).
SnvS n—oo paths

The convergence on the left side follows from the (sub-)martingale convergence theorem

(Lévy’s downward theorem).
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Problem 5.5 (Solution) Here is a direct proof without using the hint.

We start with calculating the conditional expectations
E(B}| ;)
=E((B: - Bs + By)*|F5)

= B} +4B3(B; - B,) + 6B2E((B; - B,)*) + 4B, E((B; - B,)?) + E((B; - Bs)*)
=B+ 6B2(t-s) +3(t - s)*

= B} - 6B2s + 6Bt + 3(t - 5)?,
and
B(B}|F.) = E((B: - By + B)*| 5.)

=t-s+2B,E(B; - B,) + B2

:B§+t—s.

Combining these calculations, such that the term 6B2t vanishes from the first formula,
we get

E (B} - 6tB} |7,) = By - 6sB2 - 6t° + 6st + 3> — 6t + 35°
= B}~ 6sB, + 35> - 31°.
Therefore 7(t, B) = B} — 6t B? + 3t* is a martingale.
Problem 5.6 (Solution) For ¢ =0 and all ¢ we have
I B0l = | eclPol” = 1.
and for c¢<0

2
EefPol<1 and EedPol <1.

Now let ¢t > 0 and ¢ > 0. There exists some R > 0 such that c|z| < ¢; |z|* for all |z > R.
Thus

. S g2
E ¢I5| :c[ecme 2 1o g

_ 12 . 102 L2
SC/ eclel g2z Il dm+c[ et 117 g2 l2° g
lz|<R lz|>R

. 12
eCR+c[ e 1l dr < oo,
|z|>R

IN

i.e., EedPtl < oo for all ¢, t. Furthermore

2 ~ 2_1 .2 - 2(n L
E e“Pt! =c[ el =3 Il d:nche'””‘ G

and this integral is finite if, and only if, ¢ - 2% <0 or equivalently ¢ < &

2t°
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Problem 5.7 (Solution) a) We have p(t,z) = (27t)~ fe5r. By the chain rule we get

|x|2

%p(t,x)z—gtgl(%r)ge B+ (2m) 8 (1) (<) 2

and for all j=1,...,d

0 _d 2a?j _ﬂ

g Pt = ety H(= ) e
0? a1y kP ¢ Tj _Jal?
87?p(t,:v)=(27rt) 2= 7)o 2mt) e e

Adding these terms and noting that |z|? = Z?:l x? we get

1& 92

2 |22
5; 2p(t z) = ——(27rt)’5t 1, @nt)E o

5 2 (t x).

b) A formal calculation yields

2
/p(t, x) %%f(t, x)dx
J

oo

—f%p(t,x)-lif(t,x)dx
f — Qp(t v) (b w) do

= p(t,0) 5 7S (1,0)
J

—00

0 1
~0- Fp(t,x) Sf(t2)

f 9% 2p (t x)-%f(t,x)d:v.

By the same arguments as in Exercise 5.6 we find that all terms are integrable and
vanish as |z| > co. This justifies the above calculation. Furthermore summing over

7=1,...d we obtain the statement.
Problem 5.8 (Solution) Measurability (i.e. adaptedness to the Filtration F;) and integrability
is no issue, see also Problem 5.6.
a) Uy is only a martingale for ¢ = 0.
Solution 1: see Exercise 5.9.

Solution 2: if ¢ # 0, E U, is not constant, i.e. cannot be a martingale. If ¢ = 0, U is

trivially a martingale.

b) V4 is a martingale since

E(Vt|CFS):tIE(Bt—BS)thBS—E(/OsBTdr

5.)

t
@)—E(f B, dr
S t
=tBS—[0 Brdr—]E(f (B, - B,) + B dr ?s)

:tBS—fOSBTdr—(t—s)BS

:‘/s.
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c) and e) Let a € R. Then we get
E(aB} -tB;|Fs) = E(a(B; - Bs + B,)* - t(B, - B,) - t By | Fy)
=aB? +3aB*EB;_,+3aB,EB. ,+aEB} ,-0-tB,
= aB? + (3a(t - 5) — t)Bs.
This is a martingale if, and only if, —s = 3a(t —s) — t, i.e., a = % Thus Y; is a
martingale and Wy is not a martingale.

d) We have seen in part c) and b) that

E (B} |5;) = B +3(t - s)Bs

t
31E(f0 B, dr

Thus, X; is a martingale.

and

ffs) :3/03Brdr+3(t—s)Bs.

f) Z; is only a martingale for ¢ = %, see Exercise 5.9.
Problem 5.9 (Solution) Note that IE|X| < oo for all a,b, cf. Problem 5.6. We have

E (eaBt+bt ‘ 358) — E (ea(Bt_Bs)eaBs+bt ‘ 358)

_ eaBS+bt EeaBtfs

_ eaBs+bt+(t—s)a2 /2

Thus, X; is a martingale if, and only if, bs = bt + (¢ — 3)“2—2, ie., b= —% a’.

Problem 5.10 (Solution) We have

d . d .
E(g B, 2 -t|:rs) S Z;]E((Bt(]))Q\?S) P gyl Zl((Bgﬂ)? +t-s5)=L|B-s.
Jj= Jj=

Problem 5.11 (Solution) For a)-c) we prove only the statements for 7°, the statements for 7

are proved analogously.

a) The following implications hold:
AcC = {t20: X3 e A} c{t>0: Xy e C} = 74 270
b) By part a) we have 73 ~ <73 and 73, < 75. Thus,
a)
Tave < min{7y, 76}
To see the converse, min{73, 7%} < 73,¢, it is enough to show that
Xi(w) e AuC = t>min{ry(w),75(w)}

since this implication shows that 73 ~(w) > min{7}(w), 7&(w)} holds.
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Now observe that

Xi(w)e AuC = X (w)eA or Xy(w)eC
= t>7y(w) or t>75(w)

= t > min{my(w), 7%(w)}.

c¢) Part a) implies max{7%, 78} < T4

Remark: we cannot expect “=”. To see this consider a BM! staring at By = 0 and

the set
A=[4,6] and C=[1,2]U[5,7].
Then B; has to reach first C and A before it hits AnC.

d) as in b) it is clear that 73 <73 for all n > 1, hence

o . o
THa <inf 75 .
A n>1 An

In order to show the converse, 73 > infy3; 73 , it is enough to check that
Xi(w)e A = t> ingT;} (w)
n> n

since, if this is true, this implies that 73 (w) > inf,50 73 (w).

Now observe that

Xi(w)e A=u, A, = Xy(w) € A, for some neN
= t>7,, (w) for some neN

> q
= > }lg(f)TAn(w).

e) Note that inf{s 20: X, 1€ A} = inf {s > % t X € A} is monotone decreasing as

n — oo. Thus we get

inf (£ +inf{s>1: X;e A})=0+infinf{s> L : X, A}

=inf{s>0: X;€ A}

=T4.

f) Let X; =x0+t. Then T{Oxo} =0 and 7, = oo.

More generally, a similar situation may happen if we consider a process with con-
tinuous paths, a closed set F, and if we let the process start on the boundary OF.
Then 75 = 0 a.s. (since the process is in the set) while 7 > 0 is possible with positive

probability.
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Problem 5.12 (Solution) We have 7, < 7.

Let xg € U. Then 73, = 0 and, since U is open and X; is continuous, there exists an N >0
such that
X1 €U foralln>N.

Thus 7; = 0.
If 2o ¢ U, then X;(w) € U can only happen if ¢ > 0. Thus, 77, = 7.
Problem 5.13 (Solution) Suppose d(x,A) > d(z,A). Then
d(z, A) = d(z, ) = inf |z -yl - inf |z -yl

<int(lz— 2l + |2 - yl) - nf 2]

= | - 2]
and, with an analogous argument for d(z, A) < d(z, A), we conclude

|d(z, A) —d(z, A)| < |z - z|.

Thus x — d(xz, A) is globally Lipschitz continuous, hence uniformly continuous.

Problem 5.14 (Solution) We treat the two cases simultaneously and check the three properties

of a sigma algebra:

i) We have Q € ¥, and
Qﬂ{Tgt}:{Tgt}Egthth_;_.

ii) Let Ae Fr(+y- Thus AeTFo, A€ Fo and

An{r <t} =Q~NAn{r <t} = (Qn{T<t})) N (An{T<t}) € Ty

eFcTy €Fy(4) since AeF (4
iii) Let A, € Fr(;y. Then Ay, U, Ay € Foo and
UAn N {7’ < t} = U(An N {7’ < t}) € gjt(+).
n n Ss—\———————
Efﬂ(+)
Therefore &, and F,, are o-algebras.

Problem 5.15 (Solution) a) Let F e F,,, i.e., F € Fo and for all s we have F'n{7 < s} € Fs,.

Let ¢ > 0. Then
Fo{r<t}=UJ(Fn{r<s})eJTFsr cFu.

s<t s<t

For the converse: If 7 < oo a.s. then F' = Upo(F n{T<t}) e F and
Fo{r<st=(Fn{r<t}) e Fr=Fss
t>s t>s

If 7 = 0o occurs with strictly positive probability, then we have to assume that F' € F.
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b) We have {7 <t} € F; c Foo and

{r<t}eF if r>t;

{r<tin{rat<r}=
{r<r}eF. cF ifr<t.

Problem 5.16 (Solution) a) B3 el g 5 martingale for all £ € R by Example 5.2 d). By

optional stopping
1= 6% (TAt)c2+icBrag

Since the left-hand side is real, we get

1=F (e%(“t)cz cos(cBTAt)).

Set m :=aVvb. Since |B;n| < m, we see that for me < %77 the cosine is positive. By

Fatou’s lemma we get for all mc < %7‘(’

1=1limE (e%('”\t)c2 cos(cBMt))

t—o00

>E ( lim ez (A COS(CBT/\t))

t—o0

> (e%TC2 cos(cBT))

> cos(me) I €™

Thus, E€?” < oo for any v < %02 and all ¢ < 7/(2m). Since

. &t .t
6:E —:>Vt>0,j>0 [
£ | |
]:0] J:

we see that E 77 € j!’y‘j Ee" < oo for any j > 0.

By Exercise 5.8 d) the process B} — 3 fot B, ds is a martingale. By optional stopping

we get

TAL

TAL
E(33 3] Bsds):O for all ¢3 0. (*)
0

Set m = max{a,b}. By the definition of 7 we see that | By, < m; since 7 is integrable

we get
<T-m.

3 3 TAE
|B2 ;] <m” and ‘f B ds
0
Therefore, we can use in (*) the dominated convergence theorem and let ¢t — oo:

]E(fOTBsds):

1
- E(B2

L E(BY)

1 3 1.3

3 (<) P(B, = -a) + SV P(B, =)
(512) 1 -a’b + b%a

3 a+b

—lab(b—a)

=3 _
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Problem 5.17 (Solution) By Example 5.2 ¢) |B;|>~d-t is a martingale. Thus we get by optional
stopping
1
E(t ATR) = y E|Binrs|? for all ¢30.

Since | Biarg| € R, we can use monotone convergence on the left and dominated convergence

on the right-hand side to get

1 1 1
Erg =supE(t A 7g) = lim = E|Bir,[* = = E|B,,|* = = R%.
120 t=o0 d d d

Problem 5.18 (Solution) a) For all ¢ we have

{onT<ty={o<tiu{r <t} eF.
—_—— ——
63} Eg.t

b) For all t we have

{o<rin{onT<t}= |J ({o<r<rin{oaT<t})
0<re@

= U (Hosrin{r<r})n{oar<t})edy.

reQn[0,t]
This shows that {o < 7},{c > 7} = {0 < 7}° € F,r;. Since o and 7 play symmetric

roles, we get with a similar argument that {o > 7},{c < 7} = {0 > 7} € F,Ar, and

the claim follows.

c) Since TA0 is an integrable stopping time, we get from Wald’s identities, Theorem 5.10,
that
EB?,_ =E(rAo) < .

TANO

Following the hint we get

]E(BO'BT]I{O'ST}) = E(BU/\TBT]I{U@'})

=K ( ]E(BO'/\’TB’T]I{O'ST} ‘ 5tT/\U))

b:) I (BOAT]I{JQ'} I (BT ‘ StT/\U))

™
= ]E(Bg'/\T]l{UST})'

(We will discuss the step marked by (*) below.)

With an analogous calculation for 7 < ¢ we conclude

E(B,B:) = E(BoprBrl{yery) + E(Bonr Brlirp)) = E(BZ,) =Eo AT

In the step marked with (*) we used that for integrable stopping times o, 7 we have
]E(BT | SFO'/\T) = Bonr.
To see this we use optional stopping which gives

E(BTAk | 310’/\7’/\]6) = Bo’/\'r/\k; for all k>1.
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This is the same as to say that

/BTAkdIP:fBaAMkdIP forall k31, FeFyrnp.
F F

Since Bak 2 B, in L?(P), see the proof of Theorem 5.10, we get for some fixed

1 < k because of Fyarni € Foprrnr that

f B.dP=1lim [ B, dP=lim [ ByosdP = f Bopr dP for all F € Fpprn;.
F F F F

k—o00 k—o0

Let p = o AT (or any other stopping time). Since F . = F, N T, we see that F), is

generated by the n-stable generator U; Fpr;, and (*) follows.

d) From the above and Wald’s identity we get

E(|B; - B,|*) = E(B? - 2B, B, + B?)
=Er-2ETAc+Eoc
=E(r-2(rA0)+0)
=E|r-o|.

In the last step we used the elementary relation

(a+b)-2(anb)=arb+avb-2(anb)=avb-—anb=l|a-D|.



6 Brownian Motion as a Markov Process

Problem 6.1 (Solution) We write g;(z) = (2mt)™!/? e /() for the one-dimensional normal

density.
a) This follows immediately from our proof of b).

b) Let u € By(R) and s,t > 0. Then, by the independent and stationary increments

property of a Brownian motion

Eu(|Bers||F5) = Bu(|(Biss - Bs) + By|| )

= ]EU(|(Bt+S - BS) + y|)|

y=Bs

:]Eu(|Bt+y|)|y:B‘.

Since B ~ —B we also get

]Eu(|Bt+s|\ffs)=Eu(|Bt+y|)\ =EU(|Bt_y|)‘

y=—Bs y=Bs

and, therefore,

[]Eu(|Bt + y|) + ]Eu(|Bt - y|)]y=BS
[[: (u(lz +yl) +ullz - yD) 0:(2) dz]

1

=3 [[: u(l2]) (g:(= +) +gt<z-y>)dz]

1
2
1
2 y=Bs

y=Bs

B fooo u(lz]) (9:(2 +y) + ge(z - y)) dz

y=Bs

here we use that the integrand is even in z

_ f0°° u(|2]) (ge(z + ly]) + g (2 = [y])) dz

=:gu,s,t+s(y)—it is independent of s!

y=Bs

since the integrand is also even in y! This shows that
o Bu(|Bis||Fs) is a function of |Byl, i.e. Markovianity.

o PY(|By| € dz) = gi(z2 - y) + gi(z +y) for z,y > 0, i.e. the form of the transition

function.

Remark: |By| is called reflecting (also: reflected) Brownian motion.
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c) Set M, :=sup, Bs for the running maximum, i.e. ¥; = M; — B;. From the reflection
principle, Theorem 6.9 we know that Y; ~ |By|. So the guess is that Y and |B| are

two Markov processes with the same transition function!

Let s,t >0 and u € By(R). We have by the independent and stationary increments

property of Brownian motion

E (u(Yirs) | Fs) = E (u(Mpss — Brss) | )

uss O<ust

E
= ]E( (max{bupBr, sup Bs+u} Bt+s) | Fs )
:E( (max{suli}s)(B — Bs) + (Bs — Biys), sup (Bs+u_Bs+t)}) |f7'~ )

and, as sup,¢,(By — B;) is s measurable and (Bs - Byss), SUpgcyci (Bstu— Bs+t) L T,

we get

O<ust

-k (u( max {y + (Bs — Btys), sup (Bsyy — Bs+t)}))

Y=SUPygs (BT—BS)

- (u( max {y - Bt, sup (B - Bt)}))

O<ust

y=Ys

Using time inversion (cf. 2.11) we see that (Bi-y — Bt)yeo,] 1S again a BM!, and we
get ( By, supgeuct (Bu — Br)) ~ (—Bt, supgeyct Bu))

=E (u( max{y + By, Ossigt Bu)}))

Using Solution 2 of Problem 6.8 we know the joint distribution of (B, sup,« Bu):

E (u( max {y + By, Oiggt Bu)}))

fzo./ u(max{y + z, z})\/—_— e~ (27212t g g

Splitting the integral [” _ into two parts [~

y:YS

z
00, y+I<z + /m:—oo,y+m>z we get

2=y 2z —x 2 2 0o 2
I= / u(z i O N R —f u(z) e Y2t g
(2) 27t t V2rt J2=0 (2)

-y

—e—(2z-z)2/2t

—o0

and

u(y+x) e~ (272’2t gy g

\/27r -/,; 0 f_—z -y

/ u(y+x)fx+y —QZt_ e~ (a2 gy
=—y z=x

T+y

- V2rt

=_% e—(2z-x)2/2t

zZ=x

dr = foo u(y +x) [6_12/% - e_(x+2y)2/2t] dx
=y

1
V2t
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=/

Finally, adding I and II we end up with

) w(€) [6—(5—1/)2/% _ 6—(£+y)2/2t] de.

E(u(max{y+Bt, sup Bu)})):/O-Oou(z)(gt(z+y)+gt(z—y))dz, y20

O<ust
which is the same transition function as in part b).

See part c).

Problem 6.2 (Solution) Let s,¢ > 0. We use the following abbreviations:

a)

S
Iszfo B,.dr and M,=supB, and ?szﬁ"f.

uss

Let f:R? - R measurable and bounded. Then
E (f(MS+t7 Bs+t) | ?s)

:E(f( sup By Vv M, (Bs+t_Bs)+Bs)|EFs)

ssuss+t

-E (f([Bs + sup (By=By)|v M, (Bei—By)+B,)| 3"5) :

s<uss+t

By the independent increments property of BM we get that the random variables
SUDscycsst(Bu — Bs), Bswt — Bs 1L Fg while M, and B, are s measurable. Thus, we

can treat these groups of random variables separately (see, e.g., Lemma A.3:
E (f(Mertv Bs+t) | ?s)

:E(f([z+ sup (BU—BS)]Vy, (Bs+t—Bs)+z)|ffs)

s<uss+t

y=Ms,z=Bs
= gb(MS,Bs)

where

¢(y,z)=IE(f([z+ sup (BU—BS)]\/y, (Bs+t—Bs)+z)‘9’s).

ssuss+t

Let f:R? - R measurable and bounded. Then
E(f(ls+taBs+t) ‘ ?s)
s+t
=]E(f(f By du+ I, (Bs+t—Bs)+BS)|?s)
s+t
:E(f(f (By - By)du + I, + 1B, (Bsst - Bs) +BS) ‘ 53).

By the independent increments property of BM we get that the random variables
fs+t(Bu - Bs) du, Byt — Bs I F5 while I, +tBg and B are F5 measurable. Thus, we

s

can treat these groups of random variables separately (see, e.g., Lemma A.3:

E (f(Is+taBs+t) | gjs)
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:E(f(fs+t(Bu—Bs)du+y+tz, (Bs+t—Bs)+z))

S

y=1Is,2=DBs
= ¢(IS7 BS)

for the function
s+t
6,2 =E(1( [ Bu- By dusy stz (BB +2)).

c) No! If we use the calculation of a) and b) for the function f(y,z) = g(y), i.e. only

depending on M or I, respectively, we see that we still get

E (Q(IHS) ‘ ?s) =Y(Bs, 1),

i.e. (It,F¢)+ cannot be a Markov process. The same argument applies to (My, Ft);.

Problem 6.3 (Solution) We follow the hint.

First, if f: R > R, f = f(z1,...,2n), T1,...,2Zn € RY, we see that

Em f(B(tl))7 7B(tn))
~Ef(B(t))+a,...,B(ty) + )

:/Rd...-/Rdf(y1+m,...,yn+x) P(B(t)) € dyi, ..., B(ty) € dyn)

| ——
n times

and the last expression is clearly measurable. This applies, in particular, to f = H?zl La;
where G :=}_;{B(t;) € 4;}, i.e. E” 1 is Borel measurable.

Set

I:= {m{B(tJ) EA]} . ’I’L}O, O<t1 < tn, Aly---An EBb(Rd)}.
=1

Let us see that ¥ is a Dynkin system. Clearly, @ e Y. If A € X, then

2Bl e =B%(1-1,4)=1-E"14 ¢ By(RY) — A°eX.

Finally, if (A;);>1 ¢ ¥ are disjoint and A :=(J; A; we get 14 =3 ; 14,. Thus,
B 1y =Y E 1y, € By(RY).
J
This shows that X is a Dynkin System. Denote by d(-) the Dynkin system generated by
the argument. Then
Frcxc¥? — (D) co(R)=2cFB.

But §(T") = o(T) since I is stable under finite intersections and ¢(I") = FZ. This proves,

in particular, that ¥ = FZ.

Since we can approximate every bounded F2 measurable function Z by step functions

with steps from F2 the claim follows.
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Problem 6.4 (Solution) Following the hint we set u,,(z) := (-n)vazan. Then u,(z) - u(z) = .

Using (6.7) we see
E [un(Bpsr) | Fri ] (@) = EP ) u, (By).

Now take t =0 to get
E [un(BT) ‘ ?T+](w) = up(Br)(w)

and we get

T}an}oE [un(B’F) ‘?T+](w) = T}Lnolo un(BT)(w) = BT(W)'

Since the Lh.S. is F;, measurable (as limit of such measurable functions!), the claim

follows.

Problem 6.5 (Solution) By the reflection principle, Theorem 6.9,

P (sup\BS\ > :c) <P (supBS > a:) +P (irng < —x) =P(|Bt| > z) + P(|By| > ).
S<

s<t s<t
Problem 6.6 (Solution) a) Since B(:) ~-B(:), we get

7, =inf{s>0: Bg=b} ~inf{s>0: -Bs=b} =inf{s >0 : By =-b} =7,.

b) Since B(c™?-) ~ ¢! B(-), we get

T4 =inf{s>0: By=cb} =inf{s>0: ¢ ' B, =b}
~inf{s >0 : By = b}
=inf{rc* >0 : B, =b}

=cPinf{r>0: B, =b} =c’n,
c) We have
T, = Ty=inf{s>0: By, =b}=inf{s>0: B,,, - B, =b-a}

which shows that 7, — 7, is independent of ¥ by the strong Markov property of

Brownian motion.

Now we find for all s,¢> 0 and c € [0, a]
{r.<syn{r, <ty S {r,<sntyn{r, <t} eFpsnFyc Fy.

This shows that {7, <s} €, i.e. 7, is F. measurable. Since cis arbitrary, {7.}cc[0,q]

is . measurable, and the claim follows.

Problem 6.7 (Solution) We begin with a simpler situation. As usual, we write 7, for the first
passage time of the level b: 7, = inf{t >0 : sup,; By = b} where b> 0. From Example 5.2
d) we know that (Mt£ == exp({By — %t§2))t>0 is a martingale. By optional stopping we get
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that (MfM )t>0 is also a martingale and has, therefore, constant expectation. Thus, for
b
£>0 (and with E = IE°)

1= EMg = E(exp(thmb —3(tAT)E?)

Since the RV exp({Biar,) is bounded (mind: & > 0 and Biar, < b), we can let ¢ - oo and
get

1=E ( exp({By, — %bez)) = ]E(exp(fb - %Tb§2))

or, if we take £ = V2,
Ee ™ = 6—\/ﬁb‘

As B~ -B, 1, ~ T, and the above calculation yields
Ee '\ = e_mlbl VbeRR.
Now let us turn to the situation of the problem. Set 7 = 7'(Oa bye: Here, By,; is bounded (it

is in the interval (a,b), and this makes things easier when it comes to optional stopping.

As before, we get by stopping the martingale (Mt5 )t>0 that
e = lim B (exp(EBunr - §(tA7)EY)) = B7 (exp(€B, - 3r€%)) V€

(and not, as before, for positive {! Mind also the starting point x # 0, but this does not
change things dramatically.) by, e.g., dominated convergence. The problem is now that

B does not attain a particular value as it may be a or b. We get, therefore, for all £ € R
¢ = B (exp(¢Br - 5761 (p, -y ) + B (exp(€Br - 37615, 1))
=B (exp(§a— 3715,y ) + B ((exp(€b - $76)1 5. ) )
Now pick & = +v/2\. This yields 2 equations in two unknowns:
V2T _ V2ha e (e—/\‘r]l{BT:a}) +eV2Ab e (e—,\f]l{BT:b})
o V2he _ ~V2happe (G—AT]I{BTZG}) PRVEIN 3 ot (e—,\T]l{BT:b})
Solving this system of equations gives
oV2A (=) _ (6_)\7—]1{87—:(1}) + V2N (b-a) (e—/\rﬂ{Bsz})
o~V (z-a) _ ( efxT]l{BT:a}) + e VA (b-a) o ( efxT]l{BT:b})
and so

sinh (\/ﬁ@ -a))
sinh (\/ﬁ(b ~a))

‘This answers Problem b) ‘

sinh (\/ﬁ(b - ))
sinh (\/ﬁ(b ~a)) '

E* (e"\T]I{Bsz}) = and E” (e"\T]l{BTza}) =

For the ‘solution of Problem a) ‘ we only have to add these two expressions:

sinh (\/ﬁ(b - $)) + sinh (\/ﬁ(az - a))
sinh(\/ﬁ(b—a)) .

Ee ™ =FE (e_’\T]l{BT=a}) +E (e_/\T]l{BFb}) -
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Problem 6.8 (Solution) Solution 1 (direct calculation): Denote by 7 =17, =inf{s >0 : Bs =y}

the first passage time of the level y. Then B, =y and we get for y >z
P(Bi<x, My>y)=P(By <z, 7<1)
= ]P(Bt\/T < z, T < t)

) E(E (]l{BtVT@} ‘rf”) ' ]l{rst})

by the tower property and pull-out. Now we can use Theorem 6.11

= [ PEO(B, 0y <) 1 ey (@) P(dw)

= [ PU(B ) €2) e (@) P(dw)

= [ P(Biruy <2 - 9) Ty (@) P(dw)

7= [ P(Biriy 5= ) 1pay (@) P(dw)

= [ PUB) > 20 2) Dy (@) P(w)

= [ PP (B > 25 - 0) Ty (@) P(dw)

=...=P(B;>2y—x, My >9) =" P(B; > 2y - ).
This means that

P(Bi <z, My >y)=P(B>2y ) = ny:(m)-l/?e—zz/@t) dz

and differentiating in x and y yields

2(2y —
P(By € dx, My e dy) = % e~ (2=2)*/(20) g dy.
s

Solution 2 (using Theorem 6.18): We have (with the notation of Theorem 6.18)

d o? (z-21)?
P(M,; <y, By edz) = lim P(my>a, My <y, By € do) 2 22 [e‘% _e ]

o Jan

and if we differentiate this expression in y we get

2(2y -
P(By; e dz, M; € dy) = % e~ (2=2)?/(20) gy dy.
7

Problem 6.9 (Solution) This is the so-called absorbed or killed Brownian motion. The result

is

1 2 2
P*(B; € dz, >t) = r—2z)— r+2))dz = e—(:):—z) /(2t) _ e—(z+z) /(2t) dz,
(Bt 0> 1) (gt( ) = 9:( )) Vot ( )

for ,z >0 or x,z < 0.

To see this result we assume that x > 0. Write M; = sup,; Bs; and m; = inf By for the

running maximum and minimum, respectively. Then we have for A c [0, o)

IPQJ(Bt € A, T0 > t) = IPI(Bt € A, me > 0)

o1



R.L. Schilling, L. Partzsch: Brownian Motion

=P*(Bie A, x>m;>0)
(we start in x > 0, so the minimum is smaller!)
=PY(B,e A-z, 02my>-1x)
PP PO(—Bie A-x, 0>-M,>-x)
=P'(Byex-A, 0<M;<z)
- ff (2 — )l (b) P(By € da, M; e db)
Now we use the result of Problem 6.8:

_ _ 2
PY(B; € da, M, € db) = 2(2b-a) exp (—%) da db

V2rt3
and we get
x _ 2
P*(B; e A, To>t):f]lA(x—a) [f Mexp(—m) db]da
0 2mt3 2t

:f]lA(x—a)\/%[ﬁxz'Q'gib_a)exp(—(sz;tay) db]da
:an(x—a)V;_m[/om'(zf_“) exp(—@) db]da

_ \/;_m/]lA(x—a) [-exp(—W)]zzoda

i fﬂA(x_a){exp(_;_j)_exp(_@)}da
oo -5 22

The calculation for z < 0 is similar (actually easier): Let A c (—oc0,0]

P*(By e A, 70> 0) = P*(By e A, —x < M; <0)
=P’(Bye A-z, 0<M;<-x)
2(2b-a 2b - a)?
ﬂﬂA(a+x)10 —2y(b) E/_) ex p(—%) dbda
x 2
2. (2b a) p(_(2b a) )dbda

[ ]lA(CL-f-l')\/_
(2b—a)2 -
= \/ﬁ [ Ta(a+x) [—exp (——% )]b_o da
2 2
= \/% [ Ta(a+x) {exp (—%) —exp(—(zxz—;a)—)} da
1 (y-=)* (z +y)*
= \/?m‘ [ 14(y) {exp (—T) —exp(—T—)} da.

Problem 6.10 (Solution) For a compact set K c R? the set U, := K + B(0,1/n) = {z+y : v €
K, |y| <1/n} is open.

2t

Pn(x) = d(x, Up)/(d(z, K) + d(z,Uy)).
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Since for d(z, z) := |z — 2| and all z, z € R?
d(z,A) <d(z,2) +d(z,A) = |d(z,A) —d(z,A)| <d(z, 2),

we see that ¢, (z) is continuous. Obviously, 1y, (z) > ¢n(x) > Pns1 2 1k, and 1 i = inf,, ¢,

follows.

Problem 6.11 (Solution) Recall that P = P, We have for all a > > 0
P(&>a)=P(inf{s>t: B,=0}>a)
=P (inf{h>0: By, =0} +t>a)
:E[IPBt (inf{hZO : Bh:O} >a—t)]

:E—IPO(inf{h>0 i By+x=0}>a-t)

fE—Bt]

:E—IP(inf{hZO:Bh:—x}>a—t)| B]
L =Dt

-E :]P (e >a—1t) |x_Bt]
"=PE[P (tp, > a-t)]

(GQB)E[ * |By o~B2/(2s) ds]

a-t /27 g3

*® 1Bt B2 )]
= ]E fpp—— t 8 ds.
/a—t [\/ 2mrs3

Thus, differentiating with respect to a and using Brownian scaling yields

P(& e da) = E|:¢ exp (— Bi )]
Varta—0p P\ 2(a 1)

oV [/wa' (32, tt)]

- mE[IcBll exp (~(¢ B1)?)]
Bl e (-]
where ¢? = % Lt

Now let us calculate for s = ¢?

E [|BS| eiBg] = (2ms) /2 foo |9t7|eﬂ"“2 e /(29) g

= (2775)_1/2Q[er_“g(“@s)fl)d:L‘

:(2775)_1/2m/ 2(1+ (25) Ve @1+ g
I [€—x2(1+(23) 1)]
Vors 2s+1 z=0
1 2s
- /2mrs 28 + 1
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Let (By)s0 be a BM!. Find the distribution of & = inf{s>t: Bs=0}. This gives

. 1 1 2e
]P(&Eda):(a—t)ﬁ\/ﬂ(;202+l
B 1 a—t t
“a-tr Vi (a-tafa-1)
1 t
“arVa-t

Problem 6.12 (Solution) a) We have
P (B, =0 for some te(u,0))=1-P(B;#0 forall te(u,v)).

But the complementary probability is known from Theorem 6.19.

2
P(B,#0 forall te (u,v)) =— arcsin\/@
™ v
and so

2
P(B,=0 for some tE(u,v))zl——arcsin\/@.
7T v

b) Since (u,v) c (u,w) we find with the classical conditional probability that

P (B;#0Vte (uw)|B#0Vte(u,v))
P({B;#0Vte(u,w)}n{B #0Vte(u,v)})
) P(B,#0Vte (u,v))
P (B, #0Vte(uw))

P (B #0Vte(u,v))

: /u
a) arcsin w

arcsin./%
v

c) We have

P (B, #0Vte (0,w)]|B;#0Vte(0,0))
=limP (B, # 0 Vt € (u,w) | By # 0 Vt € (u,v))
u—0

2 lim —\/5 v
I'Hopital u—0 \/1_0 /w0 —u

Problem 6.13 (Solution) We have seen in Problem 6.1 that M — B is a Markov process with
the same law as |B|. This entails immediately that & ~ 7.

Attention: this problem shows that it is not enough to have only M; — B, ~ |By| for all
t > 0, we do need that the finite-dimensional distributions coincide. The Markov property

guarantees just this once the one-dimensional distributions coincide!
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7 Brownian Motion and Transition Semigroups

Problem 7.1 (Solution) Banach space: It is obvious that Co, (R?) is a linear space. Let us show
that it is closed. By definition, u € Co (R?) if

Ve>0 3JR>0 Vz|>R: |u(z)|<e. (*)

Let (tn)n € Coo(RY) be a Cauchy sequence for the uniform convergence. It is clear that

the uniform limit w = lim,, u,, is again continuous. Fix € and pick R as in (*). Then we get
()] < Jun () = u(@)] + |un ()] < un = uf oo + |un(z)]-
By uniform convergence, there is some n(e) such that
[u(z)] < €+ fupe)(x)| forall ze R%
Since () € Coo, we find with (*) some R = R(n(e),¢) = R(¢) such that

[u(z)] < €+ [upe) (@) <ete V]z[> R(e).

Density: Fix an € and pick R > 0 as in (*), and pick a cut-off function y = yp € C(R?)
such that

I50,r) S XR < 1B(02R)-

Clearly, supp xr is compact, xr 1 1, xru € C.(R%) and

sup u(z) - xr(z)u(z)] = sup [xr(2)u(@)| < sup Ju(z)] <e.

z|>R z|>R

This shows that C.(R?) is dense in Co, (R?).

Problem 7.2 (Solution) Fix (t,y,v) € [0,00) x R? x Coo (R?), € > 0, and take any (s,z,u) €
[0,00) x R x Coo (R?). Then we find using the triangle inequality

|Psu(z) = Fo(y)| < [Psu(z) = Pso(z)] + |Psv(2) - ()] +[Pro(z) - Bro(y)]
< sup |Psu(z) — Psv(x)| + sup |Psv(x) — PsPi_sv(zx)| + |Pv(x) — Poo(y)|

= [ Ps(u =)o + [ Ps(v = Prosv) oo + [Prv(x) = Pro(y)]
<Ju=vloo + v = Prosvloo + [Prv(z) - Fro(y)]

where we used the contraction property of P;.
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e Since y — Pv(y) is continuous, there is some §; = 01(t,y,v,€) such that |z — y| <
§ = |Pw(z)- Po(y)|<e.

e Using the strong continuity of the semigroup (Proposition 7.3 f) there is some dy =

d2(t,v,€) such that [t — s| < g = |Pi_sv — V] < €.

. This proves that for ¢ := min{e, 41,02}

s =t + |z =yl +[u-v]ew <0 = |Psu(z) - P(y)] < 3e.

Problem 7.3 (Solution) By the tower property we find

E*(f(X0)9(Xews)) =" BT (E” (f(X0)g(Xews) [T))

property (

2B (f(X,)E® (9(Xers) | F2))

out

e () B (9(,)

property

= EY(f(X)h(X))

where, for every s,
h(y) =Y g(X;) is again in  Ce.

Thus, E* f(Xy)g(Xirs) = E¥¢(Xy) and ¢(y) = f(y)h(y) is in Cs. This shows that
x> EY(f(X:)g(Xtss)) is in Coo.

Using semigroups we can write the above calculation in the following form:
E(f(Xt)9(Xess)) = B (f(X1) Pog(Xy)) = P(f Psg)(x)
i.e. h=Ps and ¢ = f- Psg, and since P; preserves Co, the claim follows.

Problem 7.4 (Solution) Set u(t,z) := Pau(z) = py x u(z) = (2wt)%/? Iy u(y)e‘z_yp/% dy.

u(t,-) is in €% for t > 0: Note that the Gauss kernel

pi(z—y) = 2mt) PReVER g5
can be arbitrarily often differentiated in z and
Okpi(z - y) = Qu(z,y, )pi(2 - )

where the function Qx(z,y,t) grows at most polynomially in z and y. Since p;(z — y)

decays exponentially, we see — as in the proof of Proposition 7.3 g) — that for each z

0% pi(z - y)|
2 12
< sup |Qr(z,9,8)| L 02r)(y) + sup |Qk(z,y,t)e W%/ (168)] o~lol"/(16%) Lgeo,2r) (Y)-
lyl<2R ly|>2R

This inequality holds uniformly in a small neighbourhood of z, i.e. we can use the differ-

entiation lemma from measure and integration to conclude that O* Pu € Cp.
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x = Opu(t,x) is in €% for ¢ > 0: This follows from the first part and the fact that

2
D2 — 1) = _g(m)—d/z—le—u—y\?/% + (mt)-d2elizn 2= U1

2t2
C1flz-yf d
- 2( 2 mEmy)

Again with the domination argument of the first part we see that 9;0%u(t,z) is continuous
on (0,00) x R%.

Problem 7.5 (Solution) (a) Note that |u,| < |u| € LP. Since |Jup,—ulP < (Jup|+|ul)P < (Jul+|ul)P =
2P|ulP € L' and since |u,(z) — u(x)| - 0 for every = as n — oo, the claim follows by

dominated convergence.

(b) Let u € L and m < n. We have

Young

| Prun = Brum | Lo = [pe * (un = um)|ze < Ipelprlun = tm | 2o = [un = wm| 2o

Since (up)n is an LP Cauchy sequence (it converges in LP towards u € LP), so is

(P )n, and therefore Py := lim,, Pyu,, exists in LP.

If v, is any other sequence in LP with limit u, the above argument shows that
lim,, Pv, also exists. ‘Mixing’ the sequences (wy,) = (u1,v1,us,v2,u3,v3,...) Pro-

duces yet another convergent sequence with limit u, and we conclude that
lim Puy, = lim Pyw, = lim P,
n n n

i.e. P, is well-defined.

(¢) Any u e LP with 0 < u < 1 has a representative u € By. And then the claim follows

since P; is sub-Markovian.

(d) Recall that y — ||u(-+y) —u| e is for u € LP(dz) a continuous function. By Fubini’s

theorem and the Hélder inequality
[P - ul?, = f Eu(z+ By) - u(z)] de
< IE}(/ |u(z + By) —u(z)P d:U)
=E(Ju(-+Br) ~ul,).

The integrand is bounded by 27|u[?,, and continuous as a function of ¢; therefore we

can use the dominated convergence theorem to conclude that lim;_¢ | Pau —u| » = 0.
Problem 7.6 (Solution) Let u € €,. Then we have, by definition
Tivsu(x) = [Rd u(2) pres(x,dz)
T(T)(x) = [, Teuly) pi(.dy)

:fRd f]Rdu(z)ps(y,dZ)pt(%dy)
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= [ [ poly o) piedy)
By the semigroup property, Ti+s = 1315, and we see that
Pevs(w,dz) = fdes(%dz)pt(x,dy)-
If we pick u = 1, this formal equality becomes
pm(ﬂf,C)=fdes(y,C)pt(w,dy)-
Problem 7.7 (Solution) Using T;1¢(z) = pi(z,C) = [ 1o (y) pi(x, dy) we get
ptxl,...,tn(cl x...xCp)
= Ttl(]lc1 [ﬂz—tlﬂcg{'"Ttn_l—tn_g f ﬂcn(l‘n)ptn—tn_l("d%)'"}])(x)
- Ty (1o [Trmn e { [ 1) [ 100(00) Pryotys (2ot dvn) x

% Ptyr-tas (o)} ]) (@)

f von [ 101 (xl)]]‘CQ ($2)]10n ([Bn)ptn—tn,l (xn—17 dxn)ptn,l—tn,g (:If.n—27 dxn—l)x

N— ——
n integrals

X Plo—ty (x2v d:UZ)ptl (.Z‘, dxl)

n
= / e [ ]lCl><~~~><Cn (:El, e ,l‘n) Hptj*tjfl (:L‘j,1, d:L'j)
e j=1

n integrals
(we set tp:=0 and zp = x).

This shows that pf, ; (C1x...xCy) is the restriction of

pfl,m,tn(F):f...f]lr(xl,...,xn) Hptj_tj_l(xj_l,dxj), FeB(Rd'")
| j=1

n integrals

and the right-hand side clearly defines a probability measure. By the uniqueness theorem
for measures, each measure is uniquely defined by its values on the rectangles, so we are

done.
Problem 7.8 (Solution) (a) Let 2,y ¢ R? and a € A. Then
inf |z —a|<|x—a| < |z—y|+|a-1y]
a€eA
Since this holds for all a € A, we get
inf |z —a| < |z —y|+inf |a -
inf |z ~al <|z —y|+infla - y|
and, since x,y play symmetric roles,

Az, A) - d(y, A)| = | inf |z - o] — inf |a — ]| < |2 - y].
acA acA
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By definition, U,, = K + B(0,1/n) and u,(x) := %. Being a combination

of continuous functions, see Part (a), u,, is clearly continuous. Moreover,
up|gk =1 and  u,|ye = 0.

n—oo

This shows that 1x < u, <1ye — 1k.
Picture: u,, is piecewise linear.

Assume, without loss of generality, that supp x,, ¢ B(0,1/n?). Since 0 < u, < 1, we
find

xn*un(-’ff)=fxn(w—y)un(y)dy<fxn(x—y)dyzl V.

Now we observe that for v € (0,1)

AU (- _
1K) +dy 00> 1 LT WweK+BOa/m)

un(y) =
(Essentially this means that u, is ‘linear’ for x € U, ~ K!). Thus, if v > 1/n,

X un(@) = [ e = y)un(y) dy
> (1-9) [ Xl = 9 om (0) dy
=(1-7) f Xn (% = Y) 1 0,1/m2) (T = Y) LB (0,4/n) () dy
= (1-9) [ X = 0) Lo 00) W)Lk 45(02/m) () dy
> (1-9) [ xal@ =) Loas o1 (0) dy
“l-n  VzeK.
This shows that
1—7<11H%infxn*un(;r)Slimsupxn*un(ac)sl Vo e K,
hence,
T%l_)rgloxn *up(x) =2 forall zekK.

On the other hand, if z € K¢, there is some n > 1 such that d(z, K) > % + # Since

1 1 1 1
—+— <d(z,K) <d(z,y) +d(y, K) = d(z,y) > — or d(y,K)>—,
non n n

and so, using that supp x,, c B(0,1/n?) and suppu, c K + B(0,1/n),

1 1
Xn * Up(x) = f Xn(z = y)un(y)dy=0 Va:d(z,K)>—+—.
n o n

It follows that lim,, x, * u,(z) =0 for x € K€

Remark 1: If we are just interested in a smooth function approximating 1 x we could

use Uy, = Xn * Lissuppu, Where (xn)n is any sequence of type 6. Indeed, as before,

Xn * Lk tsuppun, () = /Xn(x_y)]lfﬂsuppun(y) dy < an(x_y) dy=1 V.
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For z ¢ K we find

Xn * ]lK+suppun (l‘) = / Xn(x - y)]lK+suppun (y) dy
= / Xn(y)]lK+suppun (z-y)dy

=fxn(y)dy
=1 Ve e K.

As before we get xpn * L ssuppu, () = 0 if d(z, K) > 2/n.
Thus, lim, Xn * L xssuppu, () = 0 if z € K€

Remark 2: The naive approach y, * 1x will, in general, not lead to a (pointwise
everywhere) approximation of 1x: consider K = {0}, then x,, * 1 = 0. In fact, since

1ge L' we get xyp* 1 - 1k in L' hence, for a subsequence, a.e. ...

Problem 7.9 (Solution) (a) Existence, contractivity: Let us, first of all, check that the series

converges. Denote by |A| any matrix norm in R%. Then we see

<tA> $ t HAJH AP

|7 =

This shows that, in general, P; is not a contraction. We can make it into a contraction

by setting Q; := e 14l P,. Tt is clear that Q; is again a semigroup, if P, is a semigroup.

Semigroup property: This is shown using as for the one-dimensional exponential se-

ries. Indeed,

=0 k!

XX Gy

7=0 j' =0
etAGSA
Strong continuity: We have
> A > AT
tA .
-0 - | 5 242 - | 5
j=1 J! j=1 J!

and, as in the first calculation, we see that the series converges absolutely. Letting

t - 0 shows strong continuity, even continuity in the operator norm.
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trictly speaking, strong continuity means that for each vector v €
Strictl ki inui hat f h R4
lim |e!4v - 0] = 0
t—0
Since
e o] < [ —id | - Jo]

strong continuity is implied by uniform continuity. One can show that the generator

of a norm-continuous semigroup is already a bounded operator, see e.g. Pazy.)

Let s,t>0. Then

(t - S])AJ

].

JAT g AT
€t sA Z(t 8. )
7=0

T

Since the sum converges absolutely, we get

A similar calculation, pulling out A to the back, yields that the sum is also e*4A.

Assume first that AB = BA. Repeated applications of this rule show A7 B* = B¥AJ
for all j,k > 0. Thus,

> & AT thk X & IR AIBE & &tk BF AT
tAetB — _ Z Z ' ‘ Z Z — etBetA.
7=0 k=0 J: 3=0 k=0 k! k=0 j=0 k! J]:
Conversely, if et4etB = etBet4 for all ¢t > 0, we get
. et —id etB —id . e —id et —id
im =lim
t—0 t t t—0 t t

and this proves AB = BA.

Alternative solution for the converse: If s = j/n and ¢t = k/n for some common de-
tAGtB _ ptBotA {}at

nominator n, we get from e

1 14 1 1 1 ip 1 1
HAGSB _ AL EA LB IB_ AB LB EA LA _ sBtA

k J 7 k

Thus, if s,t > 0 are dyadic numbers, we get

€tA—id sB SBlimetA—id

Ae®P = lim e’ =e =B A
t—0 t t—0 t
and,
sB _ d sB _ d
AB = Alim “lim S A-BA
s— S s—0 S
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(d) We have '
AT 1

eA/kzid+%A+pk and  k%py, = F_kj‘2'

=2
Note that k%py is bounded. Do the same for B (with the remainder term p}) and
multiply these expansions to get
eMheBlk =id+l A+ LBy oy

where k%0, is again bounded. In particular, if k> 1,

|t A+ 2 B+oy| <1
This allows us to (formally) apply the logarithm series

log(e/FeBlky = tA+1B+op+oy

where kza,; is bounded. Multiply with k to get
k log(eM*eB/®y = A+ B+ 7,
with k71, bounded. Then we get
A+

eA*B = lim e

k—oco

A+B+T1y

- lim ek log(eA/keBlk)
k—)OO

- lim (elog(eA/keB/k) )k

k—o0

= lim (eA/keB/k)k

k—oco

Alternative Solution: Set S = e(A*B)/* and Ty, = eA/keB/k. Then

k-1 .
SE-TF =3 SI(Sk~Ti)TF 7.
=0

This shows that
k-1 .
ISk -Tf| < Z | st -mymi|

<% [si]- 18- -]

<k ||y = Ti | - max{ | S|, | Te }**
<k [S— T - lAI+1B1

Observe that

(A+B)J X A B C
H k k” JZ(:) JZE)Z:O ki 5! ki k2

with a constant C' depending only on |A| and || B|. This yields Sf — TF — 0.
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Problem 7.10 (Solution) (a) Let 0 < s < ¢ and assume throughout that A € R is such that

t-s—h>0. We have
Pt—(s+h)Ts+h - BT
= Pt—(s+h)Ts+h - Pt—(s+h)Ts + Pt—(s+h)Ts - BT
= Pt—(s+h) (Ts+h - Ts) + (Pt—(s+h) - Pt—s)Ts

= (Pt—(s+h) - Ptfs)(Tst - Ts) + Pt*S(Ts+h - TS) + (Pt—(s+h) - PIFS)TS-

Divide by h # 0 to get for all u e D(A)ND(B)

1
E(Pt—(s+h)Ts+hu - R&—sTsu)
T -T T, -T. P - P
= (Pt—(s+h) - Pt—s)—s+huh st + P 8+huh el + ! (s+h})L e Tsu

=1+ 11+

Letting h — 0 gives
- P_sBT, and Il - -P,_ ATs.

Let us show that | — 0. We have

Ternu—Tsu
I = (Pt—(s+h) - P ) (M—S

- TSBU) + (Pt—(s+h) - Pt,s)TsBu = |1 + |2.

By the strong continuity of the semigroup (P;);, we see that Iy - 0 as h — 0.

Furthermore, by contractivity,

Toipu—Tsu
h

Torpu—Tsu
h

I < ([ Pregouy | + 1Ps]) - \ T.Bu

|

—TsBuH -0

since u € ©(B).

In general, no. The problem is the semigroup property (unless 7; and Ps commute
for all s,t>0):
UtUs = ,TtPtTSPs * ﬂTsPtPS = ﬂ+sPt+s = Ut+s-

In (c) we see how this can be ‘remedied’.

It is interesting to note (and helpful for the proof of (c)) that U; is an operator on
Coo:

and that Uy is strongly continuous: for all s,¢> 0 and f € Co

\Uef =Usfll = |TePef = TsPof + Ts P f = Ts Ps f |
< ”(Tt - Ts)PtfH + ”Ts(Pt - Ps)fH
(T =T Pf] + (P = Ps) f

and, as s —> t, both expressions tend to 0 since f, P;f € Ceo.
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64

(c) Set Uy = (Tt/nPt/n)n.

U is a contraction on Co: By assumption, Py, and Tj/, map Co into itself and,

therefore, T/, Py, : Coo = Coo as well as Uy ,.

We have [Uynf[ = T3Py Ty Pyt | < 0 1Tyl Pyl 1£1] < 171 So, by the

continuity of the norm

Uef] =

lim Ut,nf
n

‘ = lim | U f <[ £1-

Strong continuity: Since the limit defining U; is locally uniform in ¢, it is enough to

show that Uy, is strongly continuous. Let X,Y be contractions in €. Then we get

XP_yn=x"lx - xmly 4 xvly —ynly
X" X-Y)+ (X" -yrhy

hence, by the contraction property,
X" F =Yl < (X =Y)f+ (X" =Y hY /).

By iteration, we get
n—-1
|X"f =Y fl < 3 (X -Y)YEf.
k=0
Take Y =Ty, Pyjn, X = Ty Py, where n is fixed. Then letting s — ¢ shows the
strong continuity of each ¢ +— Uy .

Semigroup property: Let s, € Q and write s = j/m and ¢ = k/m for the same m.

Then we take n =1(j + k) and get

(T Pea)” -

1j Ik
T Pe) (T4 Pe)
Since n > 00 <= [ > 00 < [k,lj - oo, we see that Uy = UsU; for rational s, t.

For arbitrary s,t the semigroup property follows by approximation and the strong

continuity of Uy: let Q 3 s, > s and Q 3¢, > t. Then, by the contraction property,

|UsULf = Us, Up,, f| < |UUef = UsUs,, f | + |UsUs, f = Us, U, £
<NUef = Us, fI + [(Us = Us, ) (Ut = U) f| + [ (Us = Us, YU £ |
<NUef = Us f11 +2[(Ut, = U) f + [(Us = Us, YU S|

and the last expression tends to 0. The limit lim, Us, 4+, u = Uyt is obvious.



Solution Manual. Last update June 12, 2017

Generator: Let us begin with a heuristic argument (by ? and 7?7 indicate the steps

which are questionable!). By the chain rule

d

2 Ug==2
di tg

dt

0 "

t=0 t

2. d
=lim —
n dt

(Tt/nPt/n)ng
t=0
27 1. n—-1
£ lim [n(Tt/nPt/n) (Ty/n 2 BPyy + Tynt AP, /n)gL:O]
= Bg+ Ag.

So it is sensible to assume that ©(A)ND(B) is not empty. For the rigorous argument

we have to justify the steps marked by question marks.

We have to show that d%TsPSf exists and is TsAf + BPs f for f e ©(A)nD(B).

This follows similar to (a) since we have for s,h >0

Ts+hPs+hf - TsPsf = Ts+h(Ps+h - Ps)f + (Ts+h - Ts)Psf
= (Ts+h - Ts)(Ps+h - Ps)f + Ts(Ps+h - Ps)f + (Ts+h - Ts)Psf-

Divide by h. Then the first term converges to 0 as h — 0, while the other two terms
tend to TsAf and BP;f, respectively.

This is a matter of interchanging limit and differentiation. Recall the following

theorem from calculus, e.g. Rudin [9, Theorem 7.17].

Theorem. Let (f,)n be a sequence of differentiable functions on [0, c0) which con-
verges for some to > 0. If (f})n converges [locally] uniformly, then (fn)n converges

[locally] uniformly to a differentiable function f and we have f'=lim, f, .

This theorem holds for functions with values in any Banach space space and, there-
fore, we can apply it to the situation at hand: Fix g € D(A) n ©(B); we know
that f,(t) = U;ng converges (even locally uniformly) and, because of , that
Fh @) = (T Pyyn)"  (Tyn A+ BPyyy,)g.

Since limy, (T3, Py, )" u converges locally uniformly, so does limy, (7, P, /n)”_lu; more-
over, by the strong continuity, T}, A + BFy,) — (A + B)g locally uniformly for
g € D(A)nD(B). Therefore, the assumptions of the theorem are satisfied and we

may interchange the limits in the calculation above.

Problem 7.11 (Solution) The idea is to show that A = -3 A is closed when defined on €2 (R).
Since €2 (R) c ®(A) and since (4,D(A)) is the smallest closed extension, we are done.
So let (un)n © @2 (R) be a sequence such that u, — u uniformly and (Auy,), is a Cu
Cauchy sequence. Since Co(R) is complete, we can assume that u!, — 2g uniformly for

some g € Coo (RY). The aim is to show that u € €2 .
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(a) By the fundamental theorem of differential and integral calculus we get

(@) = 0a(0) =20 (0) = [ (), ay= [7 [Tul()d

Since u, — 2g uniformly, we get

Uun () = un(0) — zu,(0) = /Ox /(;yu;:(z)dz» j(;z '[Oy2g(z)dz.

Since up(z) - u(x) and uy,(0) - u(0), we conclude that u), (0) - ¢ converges.

(b) Recall the following theorem from calculus, e.g. Rudin [9, Theorem 7.17].

Theorem. Let (fn)n be a sequence of differentiable functions on [0, c0) which con-
verges for some to > 0. If (f])n converges uniformly, then (fy)n converges uniformly
to a differentiable function f and we have f'=lim, f.

If we apply this with f], = u!! - 2g and f,,(0) = u/,(0) - ¢, we get that u/, (z)-u!,(0) -
Jo 29(z)dt.

Let us determine the constant ¢’ := lim, u/,(0). Since u], converges uniformly, the

limit as n - oo is in Cu, and so we get

— 111m u, = 11m m (u,\r)—u = 11m ngZ
lim },(0)) = lim lim (u], 2(0) = lim [ " 2g(z)d

n—oo

ie. = [° g(z)dz. We conclude that u/,(z) - [*_ g(z) dt uniformly.
(c) Again by the Theorem quoted in (b) we get un(z) — u,(0) — [y /¥ 29(z) dz uni-
formly, and with the same argument as in (b) we get u,(0) = f_ooo 2. 29(z) d=.

Problem 7.12 (Solution) By definition, (for all @ > 0 and formally but justifiable via monotone

convergence also for a = 0)

Uslo(x) = fo Y e P o(x) di

f U E Lo (B, + ) dt
0

=Ef0 e o (By) dt.

This is the ‘discounted’ (with ‘interest rate’ ) total amount of time a Brownian motion

spends in the set C' — x.

Problem 7.13 (Solution) First formula: We use induction. The induction start with n = 0 is
clearly correct. Let us assume that the formula holds for some n and we do the induction

step n ~n+ 1. We have for § + «

dm+l aUaf (@) - g Usf (@)

dan+1 Uaf($) _él_{r(ll 5—04
()M f () - nd(-1) U f (=)
- 5—{% 8-«
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Ut f(x) - UG f ()
b0-«

Using the identity a"*' - b™*! = (a - b) ¥}_5a" /b’ we get, since the resolvents commute,

=nl(-1)"1i
n!( )513

R f(2) - U ()
f-a )

In the last line we used the resolvent identity. Now we can let 8 — « to get

Up—Ug & o nooo
o LURTULI (@) = ~Uals U3 U3 )
J= J=

2 UaUs Y UDIUI f(z) = —(n+ 1) UM f ().
3=0

This finishes the induction step.

Second formula: We use Leibniz’ formula for the derivative of a product:

n (1 i n—7J
o (19)= 3. ()00 101
j=0 \J
and we get, using the first formula

0" (aUaf (@) = (7)o" V@) + ()" MU (@)
= an!(-1)"U" f(2) + n(n - DI(-1)" U f ()
= (1) (id —aU, ) U™ f ().

Problem 7.14 (Solution) (a) Let f > 0 be a Borel function. Then we get by monotone con-

vergence
Uf(2) = lim Uaf (o) = lim [~ Pip(yde= [ Pus(o)d.
Since Uy f = (avid —A)7L f, this calculation also shows that
Nf(@)=Uf@) = [ Pf(@)dt

for all positive, measurable f > 0. By the linearity of N,U and P;, this equality
follows for all measurable f if N f*, U f* are finite.

(b) Let gi(z) = (2mt)~ %2 exp(~|x|?/(2t)). Then by part a) we get
9@) = [ e
- [ @rty R exp(-laf?(20)) dt
/2 2
a=lal?/20) ["" —dj2 [ 28 s ||
= 2 — —d
dt=—|z|2/(2s2)ds JO (27) (’x’z) c 252 8
_ 24 (27_‘_)%[/2 9d/2-1 /“ 4122 =5 g
0

= || >~ /2 % F(%l - 1)
2 T(%52)
2 rd/2
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=1 (5)
72 (d-2)

Problem 7.15 (Solution) (a) The process (¢, B;) starts at (0, By) = 0, and if we start at (s, )
we consider the process (s + ¢,z + B;) = (s,x) + (t,By). Let f € By([0,00) x R).
Since the motion in ¢ is deterministic, we can use the probability space (2, A, P = P)

generated by the Brownian motion (Bi)ssg. Then

Tif(s,x) == EC? f(¢,By) :=F f(s+t,x+ By).

T preserves Coo([0,00) x R): If f € Coo([0,00) x R), we see with dominated conver-

gence that
lim Tif(o,&)= lim Ef(o+t,{+B
iy T (8) = g, BI o+ 1.+ B)
=E lim oc+t, £+ B
om f( £+ By)
=Ef(s+t,x+ By)
= th(S,LE)

which shows that T} preserves f € Cy([0,00) x R). In a similar way we see that

lim T;f(0,&)=E lim o+t, &+ B) =0,
o tf(0,8) ‘(U@I%of( £+ By)

i.e. T; maps Coo ([0, 00) x R) into itself.

T; is a semigroup: Let f € Co ([0, 00) xIR). Then, by the independence and stationary

increments property of Brownian motion,

Tirf(s,2) =B f(s+t+ 7,2+ Byyr)
=Ef(s+t+7,x+ (Biir — B) + By)
=EE®P) f(s+7,2+ (Br - By))
=EE®B) f(s+7,2+(B;)
=ET.(s+t,x+ By)
=TT (s,x).

T; is strongly continuous: Since f € Coo([0,00) x R) is uniformly continuous, we see

that for every e > 0 there is some ¢ > 0 such that
|f(s+h,z+y)- f(s,x)|<e Vh+|yl <26

So, let t < h < §, then

|’I;gf(5,$)—f(8,$)| = ‘E(f(s+t,x+Bt)—f(s,x))‘
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< f‘BtKélf(sH,th) — f(s,2)|dP +2| |l P(|Be| > 6)

1
<42 flo 5 B(B)

Since the estimate is uniform in (s, z), this proves strong continuity.

Markov property: this is trivial.

(b) The transition semigroup is
T,f(s,z)=E f(s+t,z+By) = (27rt)_1/2 Af(s +t,x+y) ey’ /(21) dy.
The resolvent is given by

Uaf(si2) = [ e Tif(s.a) dt
and the generator is, for all f e CL2([0,00) x R)

th(S,.%')—f(S,l‘) _ Ef(8+t7$+Bt)_f(57$)
t t
_ Ef(s+t,x+ By) - f(s,x + By) . E f(s,z+ By) - f(s,z)

t t
U B0, f(s,w + Bo) + A0, f(s,2)

= (O + 5 80)f(s,).

Note that, in view of Theorem 7.19, pointwise convergence is enough (provided the

pointwise limit is a Cs-function).

(¢) We get for u € € that under P(*)
t
M =u(s+t,x+ By) —u(s,x) - /0 (8r + % Ax)u(s +r,x+ B.)dr

is an F-martingale. This is the same assertion as in Theorem 5.6 (up to the choice

of u which is restricted here as we need it in the domain of the generator...).

Problem 7.16 (Solution) Let u € ©(A) and o a stopping time with Eo < co. Use optional
stopping (Theorem A.18 in combination with remark A.21) to see that

MY, = u(Xonr) —u(x) - /(;UM Au(X,) dr
is a martingale (for either F; or F,,¢). If we take expectations we get
B u(Xpnt) - u(z) = B ([Om Au(X,) dr) .
Since u, Au € Co, We see

Em(fogm AU(Xr)dT‘)

i.e. we can use dominated convergence and let ¢ — co. Because of the right-continuity of

ot
SIE‘”(f ||AuHoodr) <[ Atfos - E¥ o < 00,
0

the paths of a Feller process we get Dynkin’s formula (7.21).
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Problem 7.17 (Solution) Clearly,
P(X;eF VieRY)<P(X,eF YgeQ").
On the other hand, since F is closed and X; has continuous paths,
X,eF VgeQ" = X;= lim X,eF Vt>0

Q*ag—t

and the converse inequality follows.
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8 The PDE Connection

Problem 8.1 (Solution) Write g;(z) = (2mt)~%4? 71712t for the heat kernel. Since convolutions
are smoothing, one finds easily that P.f = g x f € C2 c ©(A). (There is a more general
concept behind it: whenever the semigroup is analytic—i.e. z — P, has an extension to,
say, a sector in the complex plane and it is holomorphic there—one has that T; maps the

underlying Banach space into the domain of the generator; cf. e.g. Pazy [6, pp. 60-63].)

Thus, if we set f.:= P.f, we can apply Lemma 8.1 and find that
ue(tax) Lcmn__la o Ptfe(x) d:Cf PtPef(:E) ::):r:p Pt+ef($)‘

By the strong continuity of the heat semigroup, we find that

uniformly

ue(t, ) P f(x).

e—~0
Moreover,

0

1
9 (t.) = = A, P,P.
g Ue(t:) = 5 Aa Ll f

uniformly

:Pe(%Athf) %Arptf

—_—
€Coo

€—>

Since both the sequence and the differentiated sequence converge uniformly, we can inter-

change differentiation and the limit, cf. [9, Theorem 7.17, p. 152], and we get

%u(t, x) = Ei% % uc(t,z) = % Azu(t,x)

and
UE(O") =P.f E’ f= U(O7)

and we get a solution for the initial value f. The proof of the uniqueness in Lemma 8.1

stays valid.

Problem 8.2 (Solution) By differentiation we get % Otf(BS) ds = f(By) so that f(B;) =0. We

can assume that f is positive and bounded, otherwise we could consider f*(B;) A ¢ for
some constant ¢ > 0. Now IE f(B;) = 0 and we conclude from this that f = 0.

Problem 8.3 (Solution) a) Note that

— e—at < 1

|Xn(Bt)€_a fot gn(Bs)ds < ‘e—afot ds
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is uniformly bounded. Moreover,
lim Xn(Bt)e_a fot gn(Bs)ds _ ]l]R(Bt)e_afot 1[(0700)(33) ds
n—o0

which means that, by dominated convergence,

ona(@)= [N B (xa (B KBt 0y (2),
Moreover, we get that vy (z)] < A7

If we rearrange (8.12) we see that

v () = 2(axn () + v (@) - gn(2), )

and since the expression on the right has a limit as n — oo, we get that lim,,_, o ’U;L,’ \(2)

exists.

b) Integrating (*) we find

Vor @) =02 0) =2 [T (@xa) + Noua@dy - [“on()dy. ()

and, again by dominated convergence, we conclude that limy, e [0/, () = v/, 4 (0)]

exists. In addition, the right-hand side is uniformly bounded (for all |z| < R):

R R
<2f (a+/\)dy+[ dy
0 0

<2(a+ A+ 1)R.

‘2 fom(axn(y)ﬂ)vn,x(y) dy—fozgn(y)dy

Integrating (**) reveals

0a (@) = 0aa () =2}, (0) = [ [1]1(2) = el (0)] d.

Since the expression under the integral converges boundedly and since limy, o0 vy, A ()

exists, we conclude that lim,, . v/, ,(0) exists. Consequently, lim, o v, ,(x) exists.

¢) The above considerations show that

v/\(.’E) = lim Un,)\(x)
vA(z) = lim vy, 5\ (2)

V() = Tim ol ()

Problem 8.4 (Solution) We have to show that v(t,z) := fot Psg(x) ds is the unique solution of
the initial value problem (8.7) with g = g(z) satisfying |v(¢,z)| < C't.

Existence: The linear growth bound is obvious from |Psg(z)| < [ Psgleo < [|g]eo < 00. The

rest follows from the hint if we take A = %A and Lemma 7.10.
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Uniqueness: We proceed as in the proof of Lemma 8.1. Set vy(z) = [~ e M v (¢, x) dt.
This integral is, for A > 0, convergent and it is the Laplace transform of v(-,z). Under the

Laplace transform the initial value problem (8.7) with g = g(«) becomes
Moy () = Avy(z) = A g(2)

and this problem has a unique solution, cf. Proposition 7.13 f). Since the Laplace trans-

form is invertible, we see that v is unique.

Problem 8.5 (Solution) Integrating u”(z) =0 twice yields
u(z)=c and wu(x)=cr+d

with two integration constants ¢,d € R. The boundary conditions u(0) = a and u(1) = b
show that

d=a and c=b-a
so that
u(z) = (b-a)x +a.

On the other hand, by Corollary 5.11 (Wald’s identities), Brownian motion started in
x € (0,1) has the probability to exit (at the exit time 7) the interval (0,1) in the following
way:

P*(B;=1)=2 and P*(B;=0)=1-=z.

Therefore, if f:{0,1} - R is a function on the boundary of the interval (0,1) such that
f(0) =a and f(1) = b,then

E*f(By)=(1-2)f(0)+zf(1)=(b-a)z+a.

This means that u(x) = E* f(B;), a result which we will see later in Section 8.4 in much

greater generality.

Problem 8.6 (Solution) The key is to show that all points in the open and bounded, hence
relatively compact, set D are non-absorbing. Thus the closure of D has an neighbourhood,

say V o D such that E7. < E7 .. Let us show that E7. < co.

Since D is bounded, there is some R > 0 such that B(0, R) > D. Pick some test function
X = Xr such that x|ge(o,r) =0 and x € C° (RY). Pick further some function u € €2(R%)
such that Au >0 in B(0,2R). Here are two possibilities to get such a function:

d
u(z) =|z)* = x? = 1 Au(z) =1
j=1

or, if fe@y(R?), f>0and f = f(x1) we set

F(z) = F(z) = fom F(z1)d=
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and

U@)=UG@) = [" P = [ [" 5 da.

Clearly, % AU (x) = %8£1U(m1) = f(z1), and we can arrange things by picking the correct
f-
Problem: neither v nor U will be in ©(A) (unless you are so lucky as in the proof of

Lemma 8.8 to pick instantly the right function).

Now observe that

x-u, x-UeC(RY) cD(A)
A(x-U)=x-AU +U -Ax +2(Vx, VU)

which means that
Alx- U)|]B(0,R) = AU‘IB(O,R)'

The rest of the proof follows now either as in Lemma 7.24 or Lemma 8.8 (both employ,

anyway, the same argument based on Dynkin’s formula).

Problem 8.7 (Solution) We are following the hint. Let L = Z?,k:l ajr(x) 0j0) + Z?zl bj(x) 0;.
Then

L(xf) = Y. aud;0n(xf) + Y- bi0i(x.[)
J.k J
= 2 ajk(éjakx + ajakf + 3kxajf + 8jx(9kf) + 2 bj(fajx + Xajf)
J.k J

= XLf + fLx + ) (aji + ar;)9;xOkf.
ik

If |z| < R and x|g(o,r) = 1, then L(ux)(z) = Lu(z). Set u(x) = e~/ Then only the

derivatives in xi-direction give any contribution and we get
2 2
1 2 (222 -4
Ou(z) =-— e "7 and  Fu(zx) = ( ; ) e 1’
~yr2 yr
Thus we get for L(-u) = —Lu and any |z|<r

~Lu(x) = 2a11(fL’) 1_2_30% e_% 2b1(z)x; _%
o2 U ? 2

_ [2@11(1’) (1 _ 2_$%) + 2[)1(]})1‘1] 67%

yr yr yr
r2
2[2;‘2(1_2)_%] ¢ 2
r v)oar

This shows that the drift b;(z) can make the expression in the bracket negative!

Let us modify the Ansatz. Observe that for f(x) = f(z1) we have

Lf(z) = an(2)0} f(x) = bi(2)d1 f (x)
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and if we know that 92f,0,f > 0 we get
Lf(x) > agd?f(x) - bod1f(x) > 0.
This means that 8% f]01f > bg/ag seems to be natural and a reasonable Ansatz would be
x1 20
f(x)z/O- e Y dy.

Then
2bg

2y %o 20,
81f(:c)=e“f? ' and 8%]’(1’):—06“0 !
ao

and we get

Lf(x)=a1(z)

%y 20, g
ea ' —by(x)ew
ao

With the above localization trick on balls, we are done.

Problem 8.8 (Solution) Assume that By = 0. Any other starting point can be reduced to this
situation by shifting Brownian motion to By = 0. The LIL shows that a Brownian motion
satisfies

—lzli_mL<mL:1

t=0 /2t log 10g% =0 /otlog log%
i.e. B(t) oscillates for ¢t — 0 between the curves +y/2tloglog % Since a Brownian motion

has continuous sample paths, this means that it has to cross the level 0 infinitely often.

Problem 8.9 (Solution) The idea is to proceed as in Example 8.12 e) where Zaremba’s needle
plays the role a truncated flat cone in dimension d = 2 (but in dimension d > 3 it has
too small dimension). The set-up is as follows: without loss of generality we take xp =0
(otherwise we shift Brownian motion) and we assume that the cone lies in the hyperplane

{x eR?: 21 = 0} (otherwise we rotate things).

Let B(t) = (b(t),5(t)), t > 0, be a BM? where b(t) is a BM! and §(t) is a (d - 1)-
dimensional Brownian motion. Since B is a BM?, we know that the coordinate processes
b=(b(t))e0 and 3 = (B(t))=0 are independent processes. Set o, = inf{t > 1/n : b(t) = 0}.
Since 0 € R is regular for {0} c R, see Example 8.12 ), we get that lim, . 0y = Troy =0
almost surely with respect to P°. Since 3 L b, the random variable (on) is rotationally

symmetric (see, e.g., the solution to Problem 8.10).

Let C be a flat (i.e. in the hyperplane {x € R? : 1 = 0}) cone such that some truncation

C' of it lies in D°. By rotational symmetry, we get

opening angle of C
PO(B(on) € C) =y = 2P B8

full angle
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By continuity of BM, 5(0,) - £(0) =0, and this gives
PO(B(0n) € C") = 7.
Clearly, B(oy) = (b(on),8(0n)) = (0,5(0n)) and {B(0n) € C'} c {1 <on}, soO

P°(7pe = 0) = lim PY(7pe < 0,,) > lim PY(B(0,) € C') > v > 0.

n—oo

Now Blumenthal’s 0-1-law, Corollary 6.22, applies and gives PY(7,. = 0) = 1.

Problem 8.10 (Solution) Proving that the random variable (o, ) is absolutely continuous with
respect to Lebesgue measure is relatively easy: note that, because of the independence of

b and 3, hence o,, and §,

-% IPO(B(JH)ZJL‘):—% JRECERICRTD

_ fﬁ_% PO(B, > 2) P(on  di)

1 2
[ L e po, e ar
e n €
A Vot (U )
e} 1 9
_ -z*/(2t)
= —e P(o, € dt).
[/n AV4 27Tt ( )

(observe, for the last equality, that o, takes values in [1/n,00).) Since the integrand
is bounded (even as t - 0), the interchange of integration and differentiation is clearly

satisfied.

(d - 1)-dimensional version: Let § be a (d — 1)-dimensional version as in Problem 8.9

Proving that the random variable 3(o,) is rotationally symmetric is easy: note that,
because of the independence of b and (3, hence o, and [, we have for all Borel sets

Ac R
B'(B(0n) € 4) = [ BB < 4) P(o < )

and this shows that the rotational symmetry of 8 is inherited by 5(oy,).

We even get a density by formally replacing A by dx:

Blon) ~ [ PO(Br < do) P(on < db)

oo 1 )
= EE—— e
) fl/n (2nt)@ D2 © P (o, € dt) dz.

(here z € R%1).
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It is a bit more difficult to work out the exact shape of the density. Let us first determine

the distribution of o,. Clearly,
{on >t} = {infl/ngsgt |b(s)| > ()}.
By the Markov property of Brownian motion we get
P%(o, > t) = PO (infl/nSSgt Ib(s)| > o)
= B PP ((inf iy [b(s)] > 0)
= B (L1 pmys0y PP (inf ey 0(s) > 0)
+ g (1/my<0p PP (Supsgt—l/n b(s) < 0))
=’ (ﬂ{b(1/n)>o} P’ ( infoqi_1/n b(s) > —y)
+ Lp(1/ny<0) P (Supsgt_l/n b(s) < -
= E° (]1{b(1/n)>o} P’ (Supsst—un b(s) <y
+ 1 (p(1/n)y<0y P° (SuPsst—l/n b(s) < -y

bN

)

)

)

E° (Lp(1/ny>0) P 5uPscr 1/ b(5) < )

+ Loq1jmp0) P (s0sciyjab(s) <o) )
)

—9 RO (]l{b(l/n)>0} P° (SuPsst—l/n b(s) <y ‘y:b(l/n))
(612) o 0 (]l{b(l/n)>0} P° (|b(t -1/n)|< y)‘y:b(l/n))

-4 fow PO (b(t - 1/n) < y) PO(b(1/n) € dy)

2 1 °© ry 2 2
s - -z /2(t71/n)d -ny /2d
. %\/g —/0 /(; e ze Y

change of variables: ¢ = z/\/t - %
0 [i_L
— 2\/ﬁ f /y/ t n 6_42/2 dce—ny2/2 dy
m Jo Jo

For the density we differentiate in t:

_4 P%(o, > t) = _2/nd / fy/" e qe e’ 12 gy
dt m dt
£ %) f VALY 2 g
T
VY 1y / o Ty
T
= @(t n) 3/2 [_6 y? t—rit/n]
T nt =0
_ @(t 1z L
T n nt
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1 1

Crt/ni-1

Now we proceed with the d-dimensional case. We have for all z € R4

%) ]_ 2
- e E i)
B(UTL) 1/n (27rt)(d’1)/2 € IP(Un Edt) dx

o f v L ke g

n(d+1)/29(d-1)/2 1n t(d+1)/2/nt — 1

d-1)/2 o

__ n@E f 1 o-nlel2/(29) g

A@ D212 Ji  (d)2 51

W  n@De

T (d+)29(d-1)/2 B(g? %) 1F1(g’ %? -5 |5U|2)

where B(-,-) is Euler’s Beta-function and 1F} is the degenerate hypergeometric function,

cf. Gradshteyn—Ryzhik [4, Section 9.20, 9.21] and, for (%), [4, Entry 3.471.5, p. 340].
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O The Variation of Brownian Paths

Problem 9.1 (Solution) Let ¢ >0 and IT = {t) =0<t; <...<t, =1} be any partition of [0, 1].
As a continuous function on a compact space, f is uniformly continuous, i.e. there exists
6 > 0 such that |f(z) - f(y)| < 5. for all x,y €[0,1] with |z —y| <. Pick ng € IN so that
L, <& :=d A |—g| for all n > ng.
Now, the balls B(¢;,¢") for 0 < j <m are disjoint as ¢’ < @ Therefore the sets B(t;,0")n
I1,,, for 0 < j < m are also disjoint, and non-empty as |II,,,| < 6’. In particular, there exists
a subpartition II" = {go =0 < ¢1 < ... < gy = 1} of II,,; such that |t; — ¢;| < ¢’ < ¢ for all

0 <7 <m. This implies
Z;Lf(tj) - f(t-0)l - Z;If(qj') - flgj-1)I| < Zl“f(tj) = f(t-0)1 =11 (g5) = fgz-0)]
j= Jj= j=

< §:|f(tj) = f(gj) + f(tj-1) = f(gj-1)|

=1

<

<2
j

() = f(a5)l

m

[e=]

<

™

Because adding points to a partition increases the corresponding variation sum, we have
ST < ST (1) + €< S (f,1) + € < lim S (f,1) + € VAR (f,1) + ¢
and since II was arbitrarily chosen, we deduce
VAR (f,1) sggos{fn(m) +e< VAR (f,1) +¢
for every € > 0. Letting € tend to zero completes the proof.

Remark: The continuity of the function f is essential. A counterexample would be Dirich-

let’s discontinuous function f = 1gn[g,1] and II,, a refining sequence of partitions made up

of rational points.
Problem 9.2 (Solution) Note that the problem is straightforward if |z| stands for the maxi-
mum norm: ||z| = maxgj<q |;l-

Remember that all norms on R? are equivalent. One quick way of showing this is the

following: Denote by e; with j € {1,...,d} the usual basis of R%. Then

ol < (s s ) o = (- )l = B
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for every z = Z}iﬂ xje; in R? using the triangle inequality and the positive homogeneity
of norms. In particular, z ~ |z| is a continuous mapping from R? equipped with the

supremum-norm | - |« to R, since
[zl =yl <z -yl < B[z - yle

holds for every z,y in RY. Hence, the extreme value theorem claims that z — |z| attains
its minimum on the compact set {x € R? : |#]o = 1}. Finally, this implies A := min{|z| :
|z]eo =1} >0 and hence

7o > A oo

T
Izl = |7
(B4

for every z # 0 in R? as required.

As a result of the equivalence of norms on R?, it suffices to consider the supremum-norm

to determine the finiteness of variations. In particular, VAR, (f;t) < oo if, and only if,
sup{ > g(t) = g(t-)P v [h(t;) = h(t;-1)|P : I finite partition of [0, 1]}
tj_l,tjEH

is finite. But this term is bounded from below by VAR, (g;t) v VAR, (h;t) and from above
by VAR, (g;t) + VAR, (h;t), which proves the desired result.

Problem 9.3 (Solution) Let p > 0, € > 0 and I = {t) =0 <t < ... <t, = 1} a partition

80

of [0,1]. Since f is continuous and the rational numbers are dense in R, there exist
0<qi<...<qn1 <1 such that ¢; is rational and |f(t;) - f(q;)| < n~Pe'/P for every
1<j<n-1. In particular, Il" = {gp =0 < ¢ < ... < g, = 1} is a rational partition of [0,1]
such that Y7 [f(t;) - f(g)P <e.

Some preliminary considerations: If ¢ : [0,00) - R is concave and ¢(0) > 0 then ¢(ta) =

d(ta+(1-1)0) 2tod(a) + (1 -1t)p(0) > te(a) for all @ >0 and ¢ € [0,1]. Hence

Ba+b) =~ 6larb) + — 6(a+b) < o(a) + ()

for all a,b> 0, i.e. ¢ is subadditive. In particular, we have |z + y|P < (|z| + [y|)? < |z[? + |y|?

and thus
2P - |y[P| <]z -y’ forall p<1 and z,yeRR. (*)

For p > 1, on the other hand, and z,y € R such that |z| < |y| we find

lyl

4 pt?tdt <p- |z v Iy)P - (yl - o)) <p- (=] v Iy[)P - Jy - 2

lyl? - || = |
and hence

lyl” =[Pl <p- (| vy~ -y —a] forall p>1 and z,yeR (**)

using the symmetry of the inequality.
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Let p > 0 and € > 0. For every partition IT = {t) = 0 < t; < ... < t, = 1} there exists a
rational partition IT' = {go = 0 < q1 < ... < gn = 1} such that ¥7_o|f(t;) - f(g;)|""? < € and

hence
Zi:|f(t]) - f(tj—1)P - §|f(q]) — f(g-1)P
<N - Fas-)P -1 (@) - Saa)
=

(%f) max {1, (p-2°~"- | &)} - ilLf(tj) = F(@) + F(tjo1) = Flgg-D)["

<C- Z(:)‘f(tj) = fla)I"?
=
<C-e€

with a finite constant C > 0.

In particular, we have VAR, (f;1) -C-€e< VAR;?(f; 1) < VAR,(f;1) where

VAR;?(f; 1):= sup{ > 1f(g;) - f(gj=1)P : II finite, rational partition of [0, 1]}

qj-1,q;€l’
and hence the desired result as € tends to zero.

Alternative Approach: Note that (&1,...,&,) = X7 [f(&) — f(§;-1)P is a continuous

map since it is the finite sum and composition of continuous maps, and that the rational

numbers are dense in R.

Problem 9.4 (Solution) Obviously, we have VAR, (f;t) < VAR,(f;t) with

VAR, (f;t) := sup{zl|f(sj) - f(sjm1)P :nelNand 0<sp<s1<...<sp <t}
Jj=

because there are less (non-negative) summands in the definition of VAR;( fit).

Let e>0and IT={tp =0<t; <...<t, =t} a partition of [0,t]. Set s; =¢; for 1<j<n-1
and note that & — |f(&) — f(&)P is a continuous map for every &y € [0,¢] since it is the

composition of continuous maps. Hence we can pick sg € (to,t1) and s, € (t,-1, ) with

750) = S )P =1 52) = S s0)F| <

3
2
1t = ()P =1 C50) = F (1) < 5

and so that 0 < sg < sy <...<s,<t. This implies

n n-1
Z; [f () = f(E-0) P = 1f (s1) = f(to) P + 22 £ (s3) = f(s-0)P + £ (tn) = f(sn-2)IP
J= J=

<

¢ 31 (s) - sl + 5
j=1

DO | ™
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<e+ VAR (f;t)

and thus VAR, (f;t) < e+ VAR, (f;t) since the partition IT = {tg =0 <#1 <...<t, =t} was
arbitrarily chosen. Consequently, VAR, (f;t) < VAR (f;t) as € tends to zero, as required.

The same argument shows that var,(f;t) does not change its value (if it exists).

Problem 9.5 (Solution) a) Use B(t) - B(s) ~ N(0,|t - s|) to find

82

VY, - @(B(%)—B(’%))Q
S B E)-8(5) - (BB (4)- ()
RN O o)
zz—

where we also used that E(X?) =3- 0% for X ~N(0,0?).

Note that the increments B (%) -B (%) ~ N(0, %) are iid random variables. By a
standard result the sum of squares nY;_; (B(%) - B(%))2 has a x2-distribution,

i.e. its density is given by

2_n/2 m Sg_l 6_% ]1[0700)(8).
2

and we get

é(B(%)—B<%>)2~2-"/2 ()57 ¢ 1 o0y (5).

r(3)

Here is the calculation: (in case you do not know this standard result...): If X ~
N(0,1) and = > 0, we have

1 vz t?
P(X?<z)=P(X < V) = Efﬁexp(—a)dt
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)
m/ ( S) s s

using the change of variable s = t2. Hence, X2 has density

-1/2.

1 s
= ]l . — —_—— .
oo (5) = Lo (5) - = -exp (=) s
Let X1, Xs,... be independent and identically distributed random variables with
X1 ~N(0,1). We want to prove by induction that for n > 1

S n/2—
Fearix2(8) =Cn']1<o,oo>(5)‘exp<_§) -

with some normalizing constants C,, > 0. Assume that this is true for 1,...,n. Since
X2, is independent of X7 + ...+ X2 and distributed like X%, we know that the

n

density of the sum is a convolution. This leads to

fxf+m+xg+1(5):foofxz+ +Xz(t)'f 2 (S—t)dt

=Ch C’1 p( ) t”/2 ! exp( S;t)-(s—t)_1/2dt
=Cp-Cq- exp(—g) / 27 (s =) M mdt
n/2-1 ~1/2
Cur-exp(-S) / () ()
2 0 \s s

=C,-Cy- exp( ;
_ Oy exp( 2) (n+1)/2-1

using the change of variable x = t/s. Since probability distribution functions integrate

g(n+1)/2-1 0 21 (1 —a:)‘l/2 da

to one, we find
1=C,- f exp( ) s Vs =, - 2"/2/(;ooexp(—t)-t”/271dt
= C,-2"2.T(n)2)

and thus
fo+...+X,%(5) = (Qn/z : F(n/Z))_l “L0,00)(8) - e o2 g2
which is usually called chi-squared or x2-distribution with n degrees of freedom. Now,
remember that B (%) -B (%) ~N(0,1/n) ~n~'2. X}, for 1 < k < n. Hence
fyn (s)=n- fX12+...+X,2L (n-s)

=n- (2"/2 -I“(n/2))_1 1 (0,00)(5) e5I2 . (ns)2L

c) For X eN(0,1) and £ < 1/2, we find

had 2 b 2
E(eg'XQ) =(2-m)\2 f e 2 gy = f e~ M2 (1=2)2% g
—0o0 A/ 2 T 0
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=(1- 25)_1/2 * o V12 dy

=
=(1-2¢)7?

using the change of variable z? = (1 - 2¢)y?. Since the moment generating function
& (1-2¢ )_1/ 2 has a unique analytic extension to an open strip around the imaginary

axis, the characteristic function is of the form
B(e"Y7) = (1 - 2i¢) 712,

Using the independence and B (%) -B (kT) N(0,1/n), we obtain

. n . n .
E(¢€) =[] E ("¢ BrmBa-nm)*y 2 I E(eEmX*y 2 (1-2i(¢/n)) "2
k=1 k=1

and hence

T 6,(6) = lim (1-2i(¢/m) " =  tim (1- 2Lf) ) R () e

n
(d) We have shown in a) that I ((Y;,—1)?) = V(Y},) = 2/n which tends to zero as n - co.
Problem 9.6 (Solution) (a)

oo (o) 1 oo
Ver-P(Z>x)= f e_yQ/Qdy > [ L ‘yZ/Qdy == [ - e—y2/2] =
x x T X x

o -z?/2

K |
@)

P(Z ) 1 e 2?2
E >r)< ——
V2t X

On the other hand

Ver-P(Z>zx) = [ e_yQ/Qdy
00 .2
T —y22
</x y2 v dy

([ e
y x

x

:;ﬁ-([—l e‘yz/z] ~V2r- ]P(Z>m))

Yy

- (1+x2)-\/_7r-IP(Z>a:)2x-efx2
:ce_x2/2

(b) Using the independence of Ay ,, for 1 <k <2", we find
2" 2"
(hm U Akn) =1- IP(hmlnfﬂ Af )
—hmlanP(ﬂ Aj )
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27’1/
=1-liminf [TP(A},)
n—>0o00 k:l

and hence it suffices to prove liminf,, o, [T, P(Aj ) =0.

Since 1 —z < e™® for x > 0, we obtain
2m on "
H P(Af,,) = (1 - P(Al,n)) < e 2 P(ALn)
k=1 '

and a) implies

2" P(Ar,) =2"-P(V27"-|Z| > cv/n2m)
= 2" P(Z > e/n)
S 2n+1 C\/ﬁ '6_C2n/2'

“Vor An+l
Now, (¢?*n)/(c*n+1) - 1 as n — oo and thus there exists some ng € IN such that
2
cn 1 c/n 1

> - = >
An+1" 2 An+1" 2¢/n

for all n > ng. Therefore, we have

on 1 2 1 1 2
O P(A) > e L L og(@)-e?/2)n
(Ain)> o= 7 NN

for n > ng. Since In(2)-c?/2 > 0 if, and only if, ¢ < y/2log(2), we have 2"-P(A; ) — oo
and thus liminf, e 15, P(Ain) =0 if ¢ </2log(2).
c) With ¢ <+/2log(2) we deduce

271
1=P (lim sup |J Ak,n)

n—oco k=1

=P ({w € Q : for infinitely many ne IN 3k e {1,...,2"}
such that [B(k27™")(w) - B((k-1)27")(w)| > ev/n27})

=P ({w € Q : for infinitely many ne IN ke {1,...,2"}

[B(k27")(w) - B((k-1)27")(w)|

A /2—TL
<P ({w €Q:t~ By(w) is NOT 1/2-Holder continuous}).

such that

> c\/ﬁ})

Problem 9.7 (Solution) From Problem 9.5 we know that
o(N) = B D) = e E() = e N1-20) "2 forall 0< A< 1/2.
Using (a - b)? <2 (a® +b?), we get

(X212 D ¢ x2 12 M co(xt 4 1) - X
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Since A < \g < 1/2 there is some € > 0 such that A < A\g < A\g + € < 1/2. Thus,
|(X2 _ 1)26>\(X2—1)| < 2(X4 i 1)6—5)(2 _e()\0+e)X2‘
It is straightforward to see that
2X*+ 1)e ™ <O = C(N) < o0,
and the claim follows.

Problem 9.8 (Solution) Using the notation

we deduce:

a) Start of the induction:

L(2) = (a1 + az)* + 3(at + a3) —4(a3 + a3) (a1 + ap) + 2a3a3
= (af + 4d3ay + 6a2a3 + 4arad + a3) + 3(af + al)
—4(at + a3+ adag + adar) + 20343
= Ga%a% + 2a%ag
= 2(a%a3 + ada?) + 4a3a3

- R(2)

b) Induction step: Assume that we have already shown that the statement is true for
n. Then

L(mnz(i% am)‘:g (; vt (g i) (0w
o3 5 e i)
n>+4(i )62 ) 1+4(§ ot -t

+3ai+1_4ai+1_4(Za?)an+1_4a (Z )+22a Api1l

n 3
= L(n) + 4( Z aj) Anp+1 + 6

=1

n
Z ) Apy1 — ( Z a?)anﬂ +2 Z a?azwl

J=1 J=1

n 3 n n n
=L(n)+ 4an+1( > aj) + 6ai+1( > aj) - 4an+1( > a?) +2d2 ., > a?
j=1 j=1 j=1

j=1
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n+1 n+1 2 n+l n+l 2
R(n+1)=2- Za?( Zak) +4-( > ajak)
j=1 k=1
k+j

j=1 k=j+1

=R(n)+2ai+1( Zak) +22a (an+1+2an+1 Zak)+4(z an+1)
k=1

] k=1
k+j

+4.2.(i 5 J’“)(le)

j=1k=j+1

n n n n n 2
R(n) +2d2, (Zak) +2ai+12a§+4an+ ZZ ak+4a (Zaj)
j=1 j=1 k=1 Jj=1
k+j

) (5

2 n n n
ak) + 2(1$H1 Z a? +4an41 Z Z
j=1

j=1
o) (550)
i=1
and hence L(n+1) = R(n+ 1) if, and only if,

n 3 n n n n n n
4an+1( Z aj) - 4an+1( Z a?) =4da,+1 Z Z a?ak +4a,41 ( Z Z ajak)( Zai)
j j i=1

J=1 J=1

n
+ 4an+1 ( Z

7=1

T

s £I0s

= R(n) + 6ai+1(
k=1

k+j

M:

n
+4an41 - ( Z
j=1

x>
S e

+7

if, and only if, a,+1 =0 or a,4+1 =0 and

($0) ~(52) -3 St (3 S (5

(5

a;Q QL

—
=
Jils

M=
M=
M=

~
1l
—_
.
1l
—_

T
ol
S

M=
M=
™=

a;ajay + Z Ea ay + Z Za a;

i=1J=1 k=1 1=j=1 k=1 i=k=1j=1
J#i kijz k+j J#i

and hence L(n+1) = R(n+ 1) if, and only if, ap+1 =0 or a,.1 # 0 and

() ()25 5 513§ v

=1 i=1 i=1 k=1 i=1 j=1 k=1
: : =
<~ Zaa = Za] +322a]ak+222alajak
7=1 =1 J=1 k=1 1=1 j=1 ’1311'
k#j g T

which is obviously true.
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Problem 9.9 (Solution) We prove this statement inductively. The statement is obviously true
for n = 1. Assume that it holds for n. Then

n+1

aj - (Hbj) 'an+1+(Hbj)'an+1 -I1%;
j=1 j=1 j=1
[T

7=1

n+1 n+1 n+1

[Ta;-TT%
j=1 j=1

=1

<

: ‘an+1‘ + : |an+1 - bn+1‘

as required.
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10 Regularity of Brownian Paths

Problem 10.1 (Solution) a) Note that for ¢,k > 0 and any integer £ =0,1,2,...

P(Nyyp— Ny = k) =P(N, = k) = (/\kll)k oM
This shows that we have for any a > 0
B (|Nion - Ni?) = z g Q) (Ah)’“
“\he M4 Z o ) ()\h)k
e MR Z o A ()\h)k 1 -

k!
= Me M +o(h)
and, thus,
. E (|Nt+h - Nt’a)
lim
h—0 h
which means that (10.1) cannot hold for any o >0 and 8 > 0.

=

b) Part a) shows also I (|Ni., — N|*) < ch, i.e. condition (10.1) holds for a > 0 and

B=0.

The fact that 8 = 0 is needed for the convergence of the dyadic series (with the power

v < /) in the proof of Theorem 10.1.
c) We have

tk + oo tk—l .

—e =1 e =t

k! kzl (k-1)!
k

00 tk B oo
]E(Nt):Zk:Ee =Nk
k=0 k=1
t 2 -t -t
= —e =ty k e
D e L ]
(9] tk71 . [oo] tk71 ‘
S k1)t S e
A (k-1)! kzzjl (k-1)!

oo tk ~
E(N7) =) k:QEe
k=0 :

k

tk72 o9} tk71

=1
2y it BT S
Lo MR

and this shows that

E(N;-t)=EN;-t=0
E((Ne-t)°)=E(N})-2tEN, +t* =t
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and, finally, if s <t

Cov ((Ny = t)(Ns—5)) =E((IN; - t)(Ns - 3))
(N; = Ny —t+5)(Ns—5)) +E((N; - 5)?)
((N;=Ng—t+3))E((Ns—5)) +s

=5=8A1
where we used the independence of Ny — Ng 1L Ng.

Alternative Solution: One can show, as for a Brownian motion (Example 5.2 a)), that

Ny is a martingale for the canonical filtration 5V = o(N, : s < t). The proof only
uses stationary and independent increments. Thus, by the tower property, pull out

and the martingale property,

E((N; - t)(Ns - 8)) =E(E((N: - t)(Ns - ) | F2))
=E((Ns-s)E((N;-t) |FY))
=E((Ns-5)%)
=5=58At1

Problem 10.2 (Solution) We have

n

n
plel < (e in?) = Yol € g =0 g

Since maxicjen |2/ = (maxicj<, |:Bj|)p the claim follows (actually with n'/? which is

smaller than n....)
Problem 10.3 (Solution) Let a € (0,1). Since
-+ y|* < (o] + [y))*

it is enough to show that

(= +lyD® <™ + Jyl*

and, without loss of generality
(s+t)*<s*+t* Vs, t>0.
This follows from
S+t =5t T s s (s )Yt (s ) = (s+ ) (s+1)2 = (s+ 1)
Since the expectation is linear, this proves that

E(X +Y]%) <E(IX]") + E(Y]").

In the proof of Theorem 10.1 (page 154, line 1 from above and onwards) we get:
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This entails for ac€ (0,1) because of the subadditivity of x — |z|“

(e BSOSO
z,yeD, x+y ‘.%' - yh m20 x,yeD 2-(m+l)ya
27l —yl<2™™

< sup (2“ Lg(mrl)ye S a;‘)

m20 jzm

= 9(l+7)a sup Z 2"”0‘0]9“

m20 j>m

[ee]
(e § gjra o
<2 Y, 2%
J=0

For a€(0,1) and ary < 8 we get
E[( sup |£(.’E) _g(y)|) :| < 2(1+'y)a ZQj’YaE[O'?]
x+y, x,ycD |-T - y|’y 7=0

< 62(1+’Y)a i 9ivagn 9=jp
=0

_ 02(“7)0‘3” i 9i(va=B) o
=0

The rest of the proof continues literally as on page 154, line 10 onwards.

Alternative Solution: use the subadditivity of Z — E(|Z|*) directly in the second part of

the calculation, replacing |Z|r« by E(|Z]%).

Problem 10.4 (Solution) We show the following

Theorem. Let (B0 be a BMY. Then t — By(w) is for almost all w € Q nowhere Holder

continuous of any order a > 1/2.

Proof. Set for every n > 1
Api=Apa={weQ: B(-w) isin [0,n] nowhere Hélder continuous of order a > 3}.

It is not clear if the set A, , is measurable. We will show that Q@ \ A, , ¢ N, for a

measurable null set Ny, 4.

Assume that the function f is a-Hoélder continuous of order « at the point ¢y € [0,n].

Then
36>03L>0VteB(t,8) : |f(t) - f(to)| < L|t - to|*.

Since [0,n] is compact, we can use a covering argument to get a uniform Holder constant.
Consider for sufficiently large values of k£ > 1 the grid {% :j=1,...,nk}. Then there
exists a smallest index j = j(k) such that for v > 3 and, actually, 1 —va+v/2<0

and 2 ...,j;VeIB(to,é).
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92

Fori=53+1,5+2,...,7 +v we get therefore

£ =<1 G) = F o)+ 17 o) = S (5]
<L(f = tol” + 5 o)

(v+1)® o 2L(v+1)*
<L( ka) tie) =T

If f is a Brownian path, this implies that for the sets

oo kn j+v

ckee= (A U 1 48() - 5(2)

k=m j=1i=j+1

2L(Z:1)‘1}

IN

we have

o0 oo
QN Anac U U CEme
L=1m=1

Our assertion follows if we can show that IP(C#L’V’O‘) =0 for all m,L > 1 and all rational
a>1/2. Ifk>m

ek < (U 1 (8- B2) < 242
] ]p( (15(1) - B < 2520 )
P ({1B(1) - BOR)| < 24}

S

Jj+v
N
i=j+
jtv
N
i=j+

1

I
-

(B1

M§

7=1
k(B < 2500}
cC v v oty 1-va+v/[2<0
< ]’CTL(W) =C ’I’Lk1 + /2 PR 0

For the last estimate we use B(%) ~ k"Y2B(1), cf. 2.12, and therefore

vk

1 < _ 1 —y22 <
B(B(})|<x) =P (BOI<avE)= = [ < dy<eavE

—zvE <1

This proves that a Brownian path is almost surely nowhere not Holder continuous of a
fixed order a > 1/2. Call the set where this holds Q4. Then Qg = Ngsas1/2 o is a set
with P(p) = 1 and for all w € Qy we know that BM is nowhere Hélder continuous of any
order o > 1/2.

The last conclusion uses the following simple remark. Let 0 < @ < ¢ < 0. Then we have

for f:[0,n] > R and z,y € [0,n] with |z —y| <1 that

[f () = f(W)| < Lz - y|* < Lz - y|*.

Thus g-Holder continuity implies a-Hé6lder continuity. O
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Problem 10.5 (Solution) Fix € > 0, fix a set Qp c Q with P(£) = 1 and kg = h(2,w) such that
(10.6) holds for all w € Qy, i.e. for all h < hg we have

sup |B(t+h,w) - B(t,w)| <2y/2hlog ;.

0<t<1-h

Pick a partition IT = {9 =0 < t; <... <t} of [0,1] with mesh size h = max;(t; —t;—1) < ho
and assume that hg/2 < h < hg. Then we get

w 242 _ 0242 olte 1\
> B(t,w) - B(ty1,0)* < 22221 3 (15 1j1) log m—— )
J=1 J=1

n
< Ce Z(tj - tj_1) = Ce.
j=1

This shows that

n
sup Y [B(t),w) = B(tj-1,0)"™ < ce.
IMj<ho j=1

Since we have |z — y[P < 2P71(Jz — 2P + |z — y[P) and since we can refine any partition IT of

[0,1] in finitely many steps to a partition of mesh < hg, we get

VARg:2¢(B;1) = sup . |B(tj,w) - B(tj_1,w)[*** < o0
TIc[0,1] j=1

for all w e Q.
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11 The Growth of Brownian Paths

11.1. Fix C > 2 and define A,, := {Mn > Cv/nlog n} By the reflection principle we find

P(A,) =P (susz > C’\/nlogn)

s<n

=2 P(B,>C\/nlogn)
sealing o (\/ﬁBl > CW)
=2P (B1 > C\/@)

(11.1) 2

< — 1 exp (—0—2 logn)
V2r C/logn 2
2 1 1

NG C+/Togn nC*/2’

Since C?/2 > 2, the series ¥, P(A4,,) converges and, by the Borel-Cantelli lemma we see
that

IQccQ, P(Qe)=1, VweQec Ing(w) Yn2ne(w): My(w)<Cy/nlogn.

This shows that

Vwe Qe : lim n

——<C
n—oo \/nlogn

Since every ¢ is in some interval [n —1,n] and since t — +/tlogt is increasing, we see that

M, ‘ M, _ M, Vvnlogn
Vtogt ~ \/(n-1)log(n-1) +/nlogn \/(n-1)log(n-1)

-1 as n—oo

and the claim follows.
Remark: We can get the exceptional set in a uniform way: On the set Qg = Ngscs2 2o

we have P(€p) =1 and

— M
Ywe Qg : lim -

——<2
n—o \/nlogn

11.2. One should assume that £ > 0. Since y — exp(£y) is monotone increasing, we see

1
P (Sup(Bs - 58s) > 33) =P (esup“f(ng_?gQS) > egz)
s<t

Doob _1¢2
< e RSBz &
(A.13)

= e %,
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11.3.

96

(Remark: we have shown (A.13) only for supp,.; M. ¢ where D is a dense subset of [0, o).
Since s~ M¢ has continuous paths, it is easy to see that supp, s M, = sup,¢; M. ¢ almost

surely.)

Usage in step 1° of the Proof of Theorem 11.1: With the notation of the proof we set

1
t=¢" and £=¢"(1+¢€)\/2q"loglogq™ and x:§\/2qnloglogq”.

Since sup,;(Bs — %{8) > sup,q Bs — %gt the above inequality becomes

P (sup Bs>x+ %ft) <e

s<t

and if we plug in ¢, z,£ we see

P (sup Bs>x+ %ﬁt) =P (sup B > %\/2(]” loglog g™ + %(1 +e)\/2q" loglogq”)

s<t s<q™

= IP(sup Bs>(1+5) \/2q"10glogq")

s<q™

< exp (—% 2¢"loglogq™ ¢~ " (1 + €)\/2q™ log log q")
=exp (-(1+¢€) loglogq™)
1

= (log )1+
1 1

= (log q)1+e nl+te :

Now we can argue as in the proof of Theorem 11.1.

Actually, the hint is not needed, the present proof can be adapted in an easier way. We
perform the following changes at the beginning of page 166: Since every t > 1 is in some
interval of the form [¢",q"] and since the function A(t) = \/2tloglogt is increasing for
t>3, we find for allt>¢* ' >3

BO 5w BG) V2 TogTog
V2tloglogt — +/2¢" loglog ¢" V2¢" oglog gt

Therefore
= |B(®)
lim ———— < (1+¢ a.s.
t—oo /2t loglogt ( Wi
Letting € - 0 and g — 1 along countable sequences, we find the upper bound. ]

Remark: The interesting paper by Dupuis [3] shows LILs for processes (X;)0 with sta-
tionary and independent increments. It is shown there that the important ingredient are
estimates of the type P(X; > x). Thus, if we know that P(X; > ) x P (sup,q Xs > ),
we get a LIL for X; if, and only if, we have a LIL for sup ¢ X,.
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11.4. a) By the LIL for Brownian motion we find

By _ By 2tloglogt
bWa+t +2tloglogt bJ/a+t
Tmposoo () =1 JiMimon (+)=00
which shows that
— DB
lim =
t—o00 b a+t

almost surely. Therefore, P(7 < o0) = 1.

b) Let b > 1 and assume, to the contrary, that IE7 < co. Then we can use the second
Wald identity, cf. Theorem 5.10, and get

Er=EB*(1) =E(0*(a+7)) =ab® + b’ E7 >V Er > ET,

leading to a contradiction. Thus, IE7 = co.

c) Consider the stopping time 7 An. As in b) we get for all b>0
E (7 An) =EB*(r An) <ED*(a+7An)).

This gives, if b< 1,

2 2
9 9 b2<1 CLb monotone a/b
(1-b))E(rAn)<ab =>E(Mn)<—1_bgmfg:mET<l_bz<
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12 Strassen’s Functional Law of the lterated

Logarithm

Problem 12.1 (Solution) We construct a counterexample.

The function w(t) = v/, 0 <t < 1, is a limit point of the family

B(st

Zs(t) = #

V2sloglog s

where ¢ > 0 is fixed and for s — co.

By the Khintchine’s LIL (cf. Theorem 11.1) we obtain
— B(st
lim (st)

i
s=oo [2stloglog(st)

=1 (almost surely IP)

and so
— B(st
lim __BGH =/t (almost surely )

s=o0  /2sloglog(st)

which implies

—  DB(st) — B(st) loglog(st)
lim —————= = lim : =Vt.
s>oo \/2sloglogs s~ /2sloglog(st) loglog s
|
-1 for s - oo
On the other hand, the function w(t) = v/t cannot be a limit point of Z,(-) in C(0)[0,1] for

s = oco. We prove this indirectly: Let s, = s,,(w) be a sequence, such that lim,,_,c S5, = 0.
Then

1Z5() = w( Yoo —=>0

implies that for every e > 0 the inequality

(Vt—€)-\/2s,loglog s, < B(sp-t) < (Vt+€)y/2s, loglog sy, (*)

holds for all sufficiently large n and every t € [0,1]. This, however, contradicts

(1-€)y/2txlog (logi) < B(tg) < (1+€)y /2t log (log%), (**)

for a sequence ty = tp(w) - 0, k - oo, cf. Corollary 11.2.
Indeed: fix some n, then the right side of (*) is in contradiction with the left side of (**).
Remark: Note that

t 1 rtd
f w'(s)?ds = = GRS
0 4Jo s
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Problem 12.2 (Solution) For any w € X we have

t 2 t 5 t 1 9
=‘f0 w'(s)ds Sfo w'(s) ds-/(; 1ds<f0 w'(s) ds-t<t.

Problem 12.3 (Solution) Since u is absolutely continuous (w.r.t. Lebesgue measure), for almost

all ¢ € [0,1], the derivative u'(t) exists almost everywhere.

Let ¢ be a point where u' exists and let (II,),>1 be a sequence of partitions of [0, 1] such

that |II,| - 0 as n - co. We denote the points in II,, by t](fn)

sequence (t§':))n>1 such that t§.:) e1II,, and t§':21 <tg t;:) for all n e N and t§.:) - tg:ll =0

. Clearly, there exists a

as n — oo. We obtain

1 o 2
Jult) = —f o (s)ds
1) 1, i,

j—l

to simplify notation, we set ¢; := t(n) and t;_q = t; 11, then

_ 1 2
B tj—tj-1 (ut) _u(tjl))]
_ ) 2
-l — (u(ty) - u(t) +u(t) —U(tj—l))]
LY~ -1

r 2
tj -t ) ’U,(tj) - u(t) + t— tj_l ) u(t) - u(tj_l)
tj —tj,1 tj -1 tj —tj,1 t—tj,1
- ———— ————
! !
— u'(t) — u(t)

— @]

n—oo

Problem 12.4 (Solution) We use the notation of Chapter 4: Q = C[0,1], w = w, A =
B(C()[0,1]), P =, B(t,w) = By(w) =w(t), t € [0, 00).

Linearity of G® is clear. Let II,, n > 1, be a sequence of partitions of [0,1] such that

limy o0 |IT,| = 0,

IL, = {3,(6") : 0= s(()n) i RIS sl(”) }

by s(n) k=1,...,l, we denote arbitrary intermediate points, i.e. s]in)l <s ~(n) (n) for all

k. Then we have
@) =6()Bi(w) - [ B(w)do(s)
In
=¢(1)B1(w) = lim > B (@)(6(s5”) - 6(s5))-
|Hn|—>0k:1 k
Write

In
G%=p(1)B1 = Y. B (6(s") - 6(s1))
k=1 "k

In
= I;le—Bg(km)( o(s”) - a(s)) + B1(0).
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Then G?(w) = lim,, 0o G4 (w) for all w € Q. Moreover, the elementary identity
I -1
> an(bk = bg-1) = Y (ak — aps1)br + by — arbp
k=1 k=1
implies
S (n)
Gp= (Byoo = Bym)o(s), ") + (B = By )¢(1) = (Br = Byw )¢(0) + B1g(0)
=1 Tk n
ln
= 3 (B = B.)o(si") + By 6(0),
=0 k+1 k 1

«(n) _ 17 5(()7"0) =0

where S 41°=

a) G% is a Gaussian random variable with mean EG% = 0 and variance
VG- Z & (5") V(B = Byw) + 6*(0) V B

- i 62(s) (5 - 5 1 ¢2(0)5™

- (152(3) ds.

n—oo

This and lim,— e Gf{ =G? (P-a.s.) imply that G? is a Gaussian random variable
with EG? = 0 and VG? = [ ¢?(s) ds.

b) Without loss of generality we use for ¢ and 1) the same sequence of partitions.

Clearly, GY-GY - G?-GY for n - o (P-a.s.) Using the elementary inequality
2ab < a? + b? and the fact that for a Gaussian random variable E(G*) = 3(IE(G?))?,

we get

E((GpGo)?) <= [EW(GHY) +E((G)Y)]
[(B@)?) + (B@)?)]

[[ ¢2(s)ds +(/(;1¢2(3)ds)2]+6 (n>mne).

1
S 2
3
2
.3
$2

This implies
E(G?GY) — E(G*GY).

Moreover,

l ln
E(GLGY) =B [(;(3 o — B (n))¢(8(n))) : ( Z(:)(Bg(m - Bg<n>)w(s§")))]
0 j= +1 3

ln
OO E(B) + 50 E| By (B =)o)

I
+P(0)E [ng 2. (Byon — Bg<">)¢(31(cn))]
1 k=0 k+1 k
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= D E((Byon ~ Byw)?) (s Jusy) +

k=0
Sh-af
1
— | o(s)(s)ds.
n—oo 0

This proves .
E(G*GY) = fo é(5)0(s) ds.
c) Using a) and b) we see
E[(Gh -G =B[(G)*] - 2E[GR L]+ B[(G1)’]
= [ ds-2 [ ouuatsds s [ vis)ds
1
= [ (6n(s) = uls))?ds.

This and ¢, - ¢ in L? imply that (G"),s1 is a Cauchy sequence in L?(Q, A, P).
Consequently, the limit X = lim,_. G®* exists in L. Moreover, as ¢, — ¢ in L%, we
also obtain that fol P2 (s)ds - fol (s) ds.

. . . . . . 1
Since G is a Gaussian random variable with mean 0 and variance [, ¢2(s)ds, we

see that G is Gaussian with mean 0 and variance [01 $2(s) ds.
Finally, we have ¢,, > ¢ and ¢, — ¢ in Ly([0,1]) implying

—see part b)—and

1 1
A ¢n(5)1/1n(8)d8—>f0 QZ)(S)’(ﬁ(S)dS
Thus, 1
BGG") = [ o(s)u(s) ds.

Problem 12.5 (Solution) The vectors (X,Y’) in a) — d) are a.s. limits of two-dimensional Gaus-
sian distributions. Therefore, they are also Gaussian. Their mean is clearly 0. The general

density of a two-dimensional Gaussian law (with mean zero) is given by

1 1 22 y? 2pay
PP SN W E 11
2wo109\/1 — p? 21-p2) \of 03 o109
In order to solve the problems we have to determine the variances 0 = VX, 02 = VY

EXY
. We will use the results of Problem 12.4.
0109

t 1 1 1
a) U% = V(/1/2 57 dw(s)) = fo ]1[1/2,t](8)54 ds = v (t5 - 3—2),
o5 =Vw(1/2)=1/2 (= V Byjy cf. canonical model),

E(fl;2 §2 dw(s)-w(l/Q)) _ _/0111[1/27,5](5)52'11[071/2](5)613:0

— p:o

and the correlation coefficient p =
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o2 =Vw(u+1/2)=u+1/2
E(/;; s%dw(s) - w(u + 1/2))

1
:fo ]1[1/2,15](3)32']1[0,u+1/2](3)d3

(1/2+u)At 9
= f s“ds
1/2

d) of = V(/;; e’ dw(s)) = /;/12 e ds = %(62 -e),
o3 = V(w(1) ~w(1/2)) = 1/2,

]E(fl/lesdw(s)‘(w(l)—w(1/2))) - [ e tds=c- o

1/2
o—ell?
(% (62 _ 6))1/2 .
Problem 12.6 (Solution) Let wy, € ', n > 1, and w, — v in €(4)[0,1]. We have to show that
velF.

Now:

wp € F = J(cp,m) € [q_l, 1] % [0,1] : Jwp(enrn) —wnp(ry)] 2 1.

Observe that the function (c,r) = w(er) —w(r) with (c,r) € [¢7%,1] x [0,1] is continuous

for every w € C(,[0, 1].

Since [¢7!,1]x[0,1] is compact, there exists a subsequence (1)1 such that ¢,, — ¢ and

Tn, = 7 as k — oo and (&,7) € [¢7,1] x [0,1].

By assumption, wy,, — v uniformly and this implies

Wn,, (CnyTny,) = v(€F) and  wy, (ry,) = v(7).
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Finally,
|’U(E7z) - U(’FN = klEE) |wnk(cnkrnk) — Wny, (rnk)| 21
and v € F follows.
Problem 12.7 (Solution) Set L(t) =+/2tloglogt, t > e and s, =¢", n€ N, ¢ > 1. Then:

a) for the first inequality:

]P(|B<sn Dl )_P(‘Bwn_l) |
L(sy) 4 V3n-1

S——
~N(0,1)

=P (|B(1)| > 2\/2qloglogq”)

using Problem 9.6 and P(|Z] > z) =2P(Z > z) for x 20

1 S €
V2qloglogs, 4

2
-2qloglogq }

\/;6\/2qloglogq {

n2
if ¢ is sufficiently large.

b) for the second inequality:

sup |w(t)| = sup

t
/ w'(s)ds
t<g! t<g~1 1/0

v
< /0 q|w'(3)|d3

2'[f01w’(s)2ds.$]1/2

for all sufficiently large q.

c) for the third inequality: Brownian scaling (? B(-) yields

P| sup —|B(t8n)| >S)=p sup |B(t)| > ¢
ost<q-! V/25nloglogs, 4 o<t<q-1 \/2loglog s,
:IP( sup |B(t)|>—\/210glogsn)

O<t<q

<2P (|B(1/q)| > i\/Zloglogsn)

[BA/9)] e
2]P( \/m 4\/2qloglogq ) 3

for all ¢ sufficiently large. In the estimate marked with (*) we used

P( sup [B(t)|>x) <2P( sup B(t) >z) "= 2P(M(ty) > x) = 2P (|B(to)| > x).
0<t<to 0<t<to 6.0
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d) for the last inequality:

IP(—|B(S”_1)| + sup |w(t)|+ su |B(tsn)] > §)

p —
L(sn) t<q~! oct<gt L(sn) 4
B(sp- B(t
<P 1Bsn-1)| >S o sup |w(t)| > € oor sup [B(tsn)| >

B(sp- B(tsy,
SP(M>E)+P sup|w(t)|>E +P| sup M>E
L(sn) 4 t<g! 4 ost<gt L(sn) 4
C C
<= +0+—

for all sufficiently large ¢q. Using the Borel-Cantelli lemma we see that

< —€
n->o00 L(Sn) t<q-! 0st<q! L(Sn)

— [ |B(sn- B(tsy,
lim (M + sup |w(t)|+ sup M) < i .
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13 Skorokhod Representation

Problem 13.1 (Solution) Clearly, 2 := 0(B, : r<t) c o(B, : r<t, U,V) = F;. Tt remains to
show that B; — Bs 1L F, for all s <t. Let A, A”,C be Borel sets in R%. Then we find for
Fegh

P({Bi-BseC}nFn{UecA}n{VeAl})

=P({B:-Bs;eC}nF)-P{UecA}n{VeA}) (since U,V 1 F2)
=P({B;-BseC})-P(F)-P{UeA}n{VeA}) (since B, - Bs 1 FE)
=P({B;-BseC})-P(Fn{UeA}n{VeA) (since U,V 1 FB)

and this shows that B;—Bj is independent of the family €4 = {Fr‘nG : FeFB Geo(U, V)}
This family is stable under finite intersections, so By — Bs 1L 0(&s) = Fs.
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14 Stochastic Integrals: L°-Theory

Problem 14.1 (Solution) By definition of the angle bracket,
M? - (M) and N?-(N)
are martingales. Moreover, M + N are L2-martingales, i.e.
(M+N)>?~(M+N) and (M-N)?-(M-N)
are martingales. So, we subtract them to get a new martingale:
(M+N)2-(M-N)?>=4MN and (M+N)-(M-N)*< 4(M,N)

which shows that 4M N — 4(MN) is a martingale.

Problem 14.2 (Solution) Note that
[a,b)n[c,d) =[aVve,bAad) (with the convention [M,m) =@ if M >m).

Then assume that we have any two representations for a simple process

f = Z (Z)j—lﬂ[sj',l,s]') = ;wk—lﬂ[tk,l,tk)
J

Then
F=2 011, st = z’;¢j—1]1[sj_1,s]-)]1[tk_1,tk)
J Js

and, similarly,

f = kz wk—l]l[sj_l,sj)]l[tk,l,tk)'
7]

Then we get, since ¢;_1 = 1;_1 whenever [s;_1,5;) N [tk_1,t;) # &

Y. ¢i-1(B(s5) = B(sj-1)) = » ¢j-1(B(sj Atg) — B(sj-1Vtg-1))
J (J,k) : [85-1,85 )N [th-1,tk)*D
= > Yr-1(B(sj Aty) = B(sj-1Vtg-1))
(j,k):[Sj,l,sj')ﬁ[tk,l,tk)¢@
= ) Yr-1(B(sj Aty) = B(sj-1Vitp-1))

(k.3): [85-1,8)N[t-1,tx)*2

= > p-1(B(tr) - B(tr-1))
k
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Problem 14.3 (Solution) e Positivity is clear, finiteness follows with Doob’s maximal in-

equality
E [sup |M5]2] <4supE[|M[*] =4 E[|M7[].

s<T s<T

e Triangle inequality:

[
=

- 1
2
| M+ Nlyg = | E [sup|M; + N3|2])
| s<T’

1
5
< E| (sup | M| + sup|NS|)2])

| s<T s<T

_ 1 1
2 2
E sup|MS|2]) +(E [Sup|NS|2])
| s<T s<T'

where we used in the first estimate the subadditivity of the supremum and in the

IN

second inequality the Minkowski inequality (triangle inequality) in L.
e Positive homogeneity

1

2
N = (B [sup 0]} < 1 (B sup 62 )< - 1t
s<T

s<T

D=

e Definiteness

||M||M2T =0 <= Sup|M5|2 =0 (almost surely).

s<T'

Problem 14.4 (Solution) Let f, - f and g, - f be two sequences which approximate f in the
norm of L2(Ar ® P). Then we have

E(|fu® Br - g Brl') = E(|(Ju - ga) « Br[)

B[ 155) - gn(s)Pds)

= ”fn ~—9n HQLQ()\T®IP)

— 0.
n—oo

This means that

L*(P)- lim f, ¢ By = L*(IP)- lim g, ® By.
n—oo n—>oo

Problem 14.5 (Solution) Solution 1: Let 7 be a stopping time and consider the sequence of
discrete stopping times
) 12" 7] +1
Tm = 2—m /\ T.
Let tg = 0 <ty <tg <...<t, =T and, without loss of generality, 7,,(2) c {to,...,tn}-
Then (Bf] —tj); is again a discrete martingale and by optional stopping we get that

(Bgmmj —Tm At;); is a discrete martingale. This means that for each m > 1

(B™ ), =Tmnt; forall j
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and this indicates that we can set (B7); = t A 7. This process makes B2_—tA T into a

martingale. Indeed: fix 0 < s <t <T and add them to the partition, if necessary. Then

2 a.e. 2 L'(P)
By ,—— Brn and BI ., —— By
—> 00 m—>00

by dominated convergence, since sup,.cy B? is an integrable majorant. Thus,

medIP: lim [BTmAsdIP: lim fBTde]Pmed]P for all Fe9,
F F F F

m—0o0 m—0o0o

and we conclude that (B2,, — 7 At); is a martingale.

TAL
Solution 2: Observe that

t
B = [ 10 dB,

and by Theorem 14.13 b) we get

([0‘1[077)(13) /11 )ds—[ Ljo,ryds=T1nt.

(Of course, one should make sure that Lo € LQT, see e.g. Problem 14.14 below or Prob-
lem 15.2 in combination with Theorem 14.20.)

Problem 14.6 (Solution) We begin with a general remark: if f =0 on [0,s] x Q, we can use
Theorem 14.13 f) and deduce f e By =0.

a) We have

E[(feB:)?|Fs]=E[(feB: - feB)?| 7] 1413b)E[/f(r)dr|ff]

(14.19)

If both f and ¢ vanish on [0, s], the same is true for f +g. We get
E[((F29) 0 B)' 5] B[ [ (F 292 dr |5
Subtracting the ‘minus’ version from the ‘plus’ version and gives
E[((F+9) o B) - (-9« ) [7] -E] [[(+0P0) - (f -9y ar|5.].

or

¢
E[(/+B)- (92 B) | ] ~4E[ [ (F- 9y ar|5.].
b) Since f e B; is a martingale, we get for ¢ > s
E (f ° Bt ‘ EFS) marti:ngale f . B5 see a:bove 0

since f vanishes on [0, s].

c) By Theorem 14.13 f) we have for all t <T'

foeBi(w)la(w)=0eBy(w)la(w)=0.
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Problem 14.7 (Solution) Because of Lemma 14.10 it is enough to show that f,e By ——> feBrp
in L?(P). This follows immediately from Theorem 14.13 c):

E[|fneBr—feBr| | =B[|(fa- 1) Brl']
B[ [ 1) - o) ds] =0,

Problem 14.8 (Solution) Assume that (fe B)? - A is a martingale where A; is continuous and

increasing. Since (f e B)? - f2 ¢ (B) is a martingale, we conclude that

((feB)?~f*e(B))~((feB)’~A)=f*e(B)-A
is a continuous martingale with BV paths. Hence, it is a.s. constant.

2
Problem 14.9 (Solution) If X,, L, X then sup,, E(X2) < oo and the claim follows from the
fact that

E |X7% - Xgm| =k [|Xn - XmHXn + Xm|]
SVE X, + X PVE X, — X
< (VEXu? + VE| X P)VE X, — X2

Problem 14.10 (Solution) Let IT={tg=0<t; <...<t, =T} be a partition of [0,7]. Then we

get
3w 3 3
B3 = Zl (Btj - BtH)
j=
n
= 21 (Btj - Btj—l)[BtQj + Bthtjfl + ij—l]
j=
n
= E; (B, - Btjfl)[ij -2By, By, , + ij  +3By,By,_,]
j=
n
= Z; (ij - Btj—l)[(Btj - Btj—l )2 + 3ijBtj—1]
j=
n
=3 (By, - By, ., )[(By, - By,,)* + 3ij L +3By,_(By, - By,_,)]
i=1
= Zl (Btj - Btj—l) +3 2—31 Btj—l (Btj - Btj—l) +3 Z; Btj—l (Btj - Btj—l)
Jn 3 Jn 2 Jn
= Z‘i (B, - Bi,.,) +3 Zl Bi_, (Bi, - Bi,_,) +3 Z; By, (tj —tj-1)
j= Jj= Jj=
n
+3 Z:I Btj—l [(Btj - Btj—l)2 - (tj - tj—l)]
j=
=Il+IQ+Ig+I4.
Clearly,

T T
Iy——3 | B?dB, and I3——3 [ B.ds
[11]-0 0 T1|-0 0
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by Proposition 14.16 and by the construction of the stochastic resp. Riemann-Stieltjes
integral. The latter also converges in L? since I, and, as we will see in a moment, I; and

I, converge in L?-sense.

Let us show that 1,14 — 0.
L 31 B n 3
VI = V(ZI(B%. - By,.,) ) = ZV((Btj -By,,) )
j=
(13:2) Z v (ij_tj_l)

3

:HQTVB 0.
| | ( 1)|H|—_)0>

Moreover,

2
E(Iz) =I5 3 Z Btj_l [(Btj - Btj_1)2 - (tj - tjl)])
j=1
=9k Zn: i Btﬂ'*l [(Btd h Bltj—l)2 - (tj - tj_l)]Btk—l [(Btk - Btk—1)2 = (tk - tk—l)])

J=

—_
Ed
—_

~-

Il
—

=9FE ng,l[(Btj - Bt]-_1)2 - (tj —tj_l)]Q)

J

since the mixed terms break away, see below.

-9 zn: E (B2 [(By, - Biy.) - (-] )
(B g ( DE([(By - ByL) - (- 40)])

2 (B2 )E(BE -, - (- t0])

scahng

1 B (BE) (1 ~ti) BB -1])

9 Z ti1(t; — ;)2 V(BY)

n
< 9T Z(tj ~t;1) V(BY)
<9T?||V(B}) e 0.
0

Now for the argument with the mixed terms. Let j < k; then t;_1 <t; <tp_1 <, and by

the tower property,

I (Btj—l [(Btj - Btjfl)Q - (tj - tj_l)]Btk—l [(Btk - Btk-1)2 - (tk - tk—l)])
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RAael (E [Btj—l [(Btj - Btj—l )2 - (tj - tj—l)]Btk—l [(Btk ~ B, )2

- (tp = te-1)] ‘ fﬂk_l])
2B (B [(By - B’ = (5= t5)]Bis Bl[(Bu = Bi)’ = (s - ti)] [ 91, )

='E (Btj—l [(Btj - Btj—l)2 - (tj - tj—l)]Btk—l I [(Btk a Btk—1)2 = (tk — tk*l)] )

=0

2

=0.

Problem 14.11 (Solution) Let IT={t)=0<t; <...<t, =T} be a partition of [0,7]. Then we
get

f(tj)Btj - f(t]'*l)Btj—l
= f(tj—l)(Btj - Btj—l) + Btj—l (f(tj) - f(tj—l)) + (Btj - Btj—l)(f(tj) - f(tj—l))'

If we sum over j =1,...,n we get
f(T)Br - f(0) By
=2 f(tj-1)(By; = By y) + ), By (f(ty) = f(tj-1)) + 2o (Be; = By, ) (f(t5) = f(tj-1))
j=1 j=1 J=1
= Il + I2 + Ig.
Clearly,
L2 T
L — fo f(s)dBs (stochastic integral)
a.s. T
I, — [0 B df () (Riemann-Stieltjes integral)

and if we can show that I3 — 0 in L2 then we are done (as this also implies the L*-

convergence of I3). Now we have

2
I (Z(Btj - B, )(f(t5) —f(tj—1))) ]

J=1

SB[ 3232 0, - By ) (1(0) = F50) (B, = B (P 00) - Ft)

the mixed terms break away because of the independent increments property of Brownian

motion

ZE [(B., - By, 2 (F(t3) - £(t-0))°]
J

NgE

(F(t;) = F(tj-))*E[ (B, - By,,)?]

1

1(tj —t ) (f(ty) = f(tj-1))?

I
<.
3

J

2011 | £ i1|f<tj> o

IN
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<2[H] - | f]lee VAR (f; [0, T])H—(;O

where we used the fact that a BV-function is necessarily bounded:

IF@OI<[f(@) = FO)[+f(0)] < VAR1(f3[0,t]) + VAR1(f;{0}) < 2VAR:1(f;[0,T])

for all t e [0,T].
Problem 14.12 (Solution) Replace, starting in the fourth line of the proof of Proposition 14.16,

the argument as follows:

By the maximal inequalities (14.21) for Itd integrals we get
]
<4 ] [1£(s) = £ ()] s
=43 [T R[F6) - fs50)P] ds

Sj-1

Bsu| [ 17 70 a

t<T

- 1

f sup  E[|f(u) - f(0)] ds —0.

Sj-1 u,ve[s;-1,55] [11[-0

-0, [T1|-0

Problem 14.13 (Solution) To simplify notation, we drop the n in II,, and write only 0 = ¢y <
t1<...<tp=T and
9101[,]' = 9]' =at; + (1 - Oz)tj_l.

We get

k T

Lr(a) = LA(P)- 3 By (B, - B, ) - f B,dB, +aT.
-0 4 0
7=1

Indeed, we have

k

ZBGj (Btj N Btj—l)
J:

k k
Z i1 (Br; = Bryy) + Z;(B@j - By, ,)(Bi; - By, )
j=1 =
k

k k
] 1(Btj - Btj—l) + Z(Bej - Btj—1)2 + E(Btj - ng)(Bej - Btj—l)
j=1 J=1

=X+Y+Z

We know already that X T fo BsdBs. Moreover,
I1]-0

VZ-= V(Zk:(Btj - By,)(By, —Btjl))

J=1

k
= ;V[(Btj _Bej)(Bej - Btifl):l
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E

=, E [(Bt]- - Bej)Q(ng - Btifl)Q]

<
Il
—_

M=

= E[(Btj _Bej)2]E|:(Bej _Btj—l)z]

<
I
—

M-

(tj —0;)(0; —tj-1)

<
Il
—_

as in Theorem 9.1

k
=a(l-a) Z;(tj —tj1)(tj —tj1) ———— 0.
=

Finally,

J=1

k
(0]' - tj—l) = Z(t]’ - tj—l) = aT.
7=1

k k
EY =E (Z(Bf)j B Btjl)z) - Z E(By, - Btj71)2
j=1
>
= z

The L?-convergence follows now literally as in the proof of Theorem 9.1.

Consequence: Lp(a) = % (B% + (2a - l)T)7 and this stochastic integral is a martingale if,
and only if, a =0, i.e. if 0; = t;_1 is the left endpoint of the interval.

For o = % we get the so-called Stratonovich or mid-point stochastic integral. This will

obey the usual calculus rules (instead of Itd’s rule). A first sign is the fact that
LT(%) = %B%

and we usually write
T
Ly(l) = fo B, o dB,

with the Stratonovich-circle o to indicate the mid-point rule.

Problem 14.14 (Solution) a) Let 75 be a sequence of stopping times with countably many,
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discrete values such that 74, | 7. For example, 73, := (|287] + 1)/2¥, see Lemma A.15

in the appendix. Write s <... < sk for the values of 7;. In particular,
Lo, ramy) = ;H{TAT]C:T/\SJ-}]I[O,T/\SJ')
And so
{(5,w) = Lo par(w)) (8) =1} = L}J[O,T/\ $;) x{T A1, =T A s;}.
Since {T'A T, =T Asj} € Frag;, it is clear that
{(5,w) Lo pary () (8) = 130 ([0,¢] x ) € BO,2] x Ty for all £>0

and progressive measurability of L[, ) follows.
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b) Since TAT, | T A7 and T A 7, has only finitely many values, and we find

im Lo 7a7,,) = Ljo,7a7]

k—oco
almost surely. Consequently, 1[07T,\T(w)](8) is also P-measurable.

In fact, we do not need to prove the progressive measurability of 1y 71, to evaluate

the integral. If you want to show it nevertheless, have a look at Problem 15.2 below.

¢) Fix k and write 0 < $1 <... < s for the values of T'A 7. Then

[ Momany () dBa = [ 00,0y ()1 (a4
J
= Z BSj]]-{TATk:T/\S]'}
J

= BT/\Tk .

d) Tporar) = L?-limy, 119, 7pr,): This follows from

E[|]1[0,TATk)(5)—]l[o,TM)(S)|2dS=]E/|]1[TAT,TATk)(8)|2 ds
:Efﬂ[TAT,TATk)(S)dS

=E(T A7 =T AT) ——0

by dominated convergence.

e) By the very definition of the stochastic integral we find now
f IL[O,T/\T)(S) dBs E L*- lillgl [ ]I[O,T/\Tk)(‘s) dBs 2 L* hi_n Brar, = Brar

by the continuity of Brownian motion and dominated convergence: sup,cr|Bs| is
integrable.
f) The result is, in the light of the localization principle of Theorem 14.13 not unex-
pected.
Problem 14.15 (Solution) Throughout the proof ¢ > 0 is arbitrary but fixed.
e Clearly, @,[0,T] xQ e P.

o Let I'eP. Then

r°n ([0,t] x Q) = ([0,t] x )~ (D ([0,¢] x Q)) € B[0,¢] ® F,

GB[O,t]@?t E'B[O,t]@.rft
thus I'° € P.

e Let I'), € P. By definition

I, ([0,t] x Q) e B[O, ] ® F,
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and we can take the union over n to get

(Lnjrn) n([0,4] x ) =J(Ty n ([0,¢] x Q)) € B[O, t] ® F

n

ie. U, Iy, €.

Problem 14.16 (Solution) Let f(¢,w) be right-continuous on the interval [0,7]. (We consider

only T < oo since the case of the infinite interval [0, 00) is actually easier.)

Set

f(s,0) = (L AT w)

then
fnT(s,w) = Zf(% A T,w) ]l[kQ*'n’(kH_l)an)(S) (s<T)
k

and, since (|2"s]+1)/2" | s, we find by right-continuity that f, - f as n - oo. This

means that it is enough to consider the P-measurability of the step-function f,.

Fix n >0, write t; = j27". Then ty =0 <t <...tny < T for some suitable N. Observe that

for any z € R
N
{(s,w) « f(s,w) <a} ={T} x{w: f(T,w) <z}u Ul[tj—latj) x{w @ f(tj,w) <z}
j=

and each set appearing in the union set on the right is in B[0,7] ® F7.
This shows that fI and f are B[0,7] ® Fr measurable.

Now consider f! and f (t)]l[07t]. We conclude, with the same reasoning, that both are

B[0,t] ® F; measurable.
This shows that a right-continuous f is progressive.

If f is left-continuous, we use |2" s]/2" 1 s and define the approximating function as
gr (5,0) = 2 (& AT, w) Lpan (re1ya-ny(s)  (s<T).
k
The rest of the proof is similar.

Problem 14.17 (Solution) By definition, there is a sequence f,, of elementary processes, i.e. of

processes of the form

fn(saw) = quj*l(s)ﬂ[tjfl,tj)(s)
J

where ¢;-1 is J;, , measurable such that f, - f in L?(pr ® P). In particular, there is a

subsequence such that

t t
lm [Cfa )P da= [CIfe)PdA, as.

so that it is enough to check that the integrals fot | fn(j)(s)|2 dAg are adapted. By defintion
t
[0 |fn(j)(5)|2 dAs = Z ¢j2'_1(AtjAt - Atj,lm)
j

and from this it is clear that the integral is F; measurable for each t.
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15 Stochastic Integrals: Beyond L2

Problem 15.1 (Solution) We know from the proof of Lemma 15.2 that for f € £2. and any

approximating sequence ( fy,)ns0 € E7 we have
¢ t
Vte[0,7] 3(n(j,t))js1 ¢ lim f \fn(jt)(s,-)|2 ds = f |£(s,)*ds almost surely.
j—>o0 JO ’ 0

In particular the subsequence may depend on ¢. Since the rational numbers Q. n [0,7']
are dense in [0,7] we can construct, by a diagonal procedure, a subsequence m(j) such
that

Am()pr Vael0.1710Q: lim [*1fy(s.)Pds= [717(s, )P ds  almost surely.
j—00

Observe that for any ¢ € (0,7") there are rational numbers ¢, € Q n [0,7] such that
0<r<t<qg<T. Then

" 2 ! 2 1 2
[ B ds < [ 1hmgy (s ds < [ gy (s )P ds

and
r t
h_m/ |fm(j)(8,’)|2d8<1i_m/ | fini) (5,7 ds
j—o00 0 j—oo 0
< lim ft|fm(‘)(3,')|2d5< qu\fm(')(S,')PdS
j—o00 JO J j—o00 JO J
hence

r ) t — t q
[ 1fG P ds < tim [y ()P ds < T [ (s )P ds < [15(s, )P ds.

J—>00

Letting r 1 ¢t and ¢ | t along sequences of rational numbers, shows that

t 9 . t 9 E— t 9 t 9
[ 1P s < tim [ gy (s )P ds < T [ gy (s )P ds< [ 17(s, )P ds.

J—>00

Alternative Solution: As in the proof of Lemma 15.2 there exists a sequence (fp)ns0 € E7

which converges to f in L?(A7 ® P). There is a subsequence ( fn(j)) j>0 such that

T
/0 | fn) (s50) = f (s, J|*ds -0 almost surely.

By the lower triangle inequality, we obtain

‘(fot '-’%‘)(S,‘)I?ds)é ([ 1rsopas)

) (/ot|fn<j>(8,-) —f(sv_)|2ds)§
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([ s s )

—— 0 almost surely

j—)OO
for all t € [0,T].

Problem 15.2 (Solution) Solution 1: We have that the process t = T - () (%) is adapted

{w: Lpor) () =0} ={r<t}eF

since T is a stopping time. By Problem 14.16 we conclude that 1 ;y is progressive.

Solution 2: Set t; = 727" and define

I (5,) = Lo,y (B A1) = 32 Upo,ran) (B A )t 47.0) (5 A1),

J
Since |2"s]/2" | s we find, by right-continuity, I — Ljo,r). Therefore, it is enough to
check that I is B[0,t] ® F;-measurable. But this is obvious from the form of I!.

Problem 15.3 (Solution) Assume that o, are stopping times such that (M{"1,, 501)¢ is a
martingale. Clearly,

e 7, =0, AN T oo almost surely as n — oo;
e {0,>0}={o,An>0}={7,>0}

e by optional stopping, the following process is a martingale for each n:

Mt(;\nn]l{o'n>0} = anAn]]'{UWPO} = Mtgn/\n]l{an/\”>0} = Mtq—n]l{ﬂﬁo}'

Remark: This has an interesting consequence:

E [sup |M (s A Tn)|2] D%Ob 4E [|M(Tn)|2] <4 E [|M(n)|2]

s<T
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16 1t6’s Formula

Problem 16.1 (Solution) We try to identify the bits and pieces as parts of It6’s formula. For
f(x) =e” we get f'(x) = f"(x) = €” and so

t 1 rt
eBt—lzf eBsst+—[ eBs ds.
0 2 Jo

Thus,

With the same trick we try to find f(z) such that f'(z) = ze® . A moment’s thought

reveals that f(z) = %e$2 will do. Moreover f"(x) = ¢ +222e%” . This then gives

1 1 ¢ 1 rt
e [ BSeBg dBs + - f (eBg + ZBzeBg)ds
2 2 Jo 2 Jo

and we see that
Y; :%(633 —1—f0t(eB? +233633)ds).
Note: the integrand BgeBg is not of class L%, thus we have to use a stopping technique
(as in step 4° of the proof of It6’s formula or as in Chapter 15).
Problem 16.2 (Solution) a) Set F'(z,y) = xy and G(t) = (f(t),9(t)).
Then f(t)g(t) = F o G(t). If we differentiate this using the chain rule we get
% (FoG)=0:FoG(t)-f'(t)+ 0,F o G(t) - g'(t) = g(t) - f'(t) + £ () - g’ (¥)
(surprised?) and if we integrate this up we see
FoG(t) - FoG(0) = fot £(5)g'(s)ds + [Otg(s)f'(s) ds
= [ 5 dg)+ [ o) ares).

Note: For the first equality we have to assume that f’, ¢’ exist Lebesgue a.e. and
that their primitives are f and g, respectively. This is tantamount to saying that f, g

are absolutely continuous with respect to Lebesgue measure.

b) f(z,y) = zy. Then 0,f(z,y) = y,0,f(x,y) =  and 0,0,f(x,y) = 0,0, f(z,y) =1
and 02 f(z,y) = 85 f(x,y) =0. Thus, the 2-dimensional It6 formula yields

t t
befs = fo bs dfs + [O By dbs+
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1 t 1 rt t
b5 [0 b sy ds e [T OB ds [ 0.0, (b, 8.) dib. B)s
t t
:A bsdﬁs""/(; 5sdbs+<b75>t-

If b 1 B we have (b,) = 0 (note our Itd formula has no mixed second derivatives!)
and we get the formula as in the statement. Otherwise we have to take care of
(b, ). This is not so easy to calculate since we need more information on the joint

distribution. In general, we have

(0,8) = li|m > () = b(t;-1)) (B(t;) - B(tj-1))-

=047

Where II stands for a partition of the interval [0,].

Problem 16.3 (Solution) Consider the two-dimensional It6 process X; = (¢, B;) with parame-

() = f)

Applying the It formula (16.8) we get

ters

g

f(t,By) = f(0,0) = f(X¢) - f(Xo)
= /Ot (31f(Xs)011 + 32f(Xs)021) dB;
t
e [T (00 Kb+ 80 (X b + 50200 (X)) s
=fta F(X,)dB +ft(a FOX)by + 20900 f (X )) ds
0 2 s s 0 1 s)V1 2 202 s
o rtof t{of 10%f
- [ ShsBodB+ | (E(S,BS) " 5@(S,BS)) ds.
In the same way we obtain the d-dimensional counterpart:

Let (B},...,Bf)i0 be a BM? and f : [0, 00) x R? - R be a function of class €12, Consider

the d + 1-dimensional It6 process X; = (¢, B}, ..., B}) with parameters
1

1, ifi=k+1; 0

oceRU 5= and b=|

0, else; :

0

The multidimensional It6 formula (16.8) yields

f(t, B ...,BY - £(0,0,...,0)
= f(Xy) - f(Xo)

i[tdfaf()() 4B dfftaf(X)bd 1dfftaaf(X)i a
= f(Xs)o; . + if(Xs)bjds+ = ;05 f(Xs ok ik ds
k=170 | =1 ! Ik j=170 ! ’ 2,521 J0 ’ k=1 Kok
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—Zf a1 f(Xs) dB + f@lf(X)ds+—d+lf 0,0, f(X,) ds

d

—th 9 (. B, ...,B;l)dB§+f0 (a(s,B;,.. By + Z B;,...,B;l)) ds.
k=1

Problem 16.4 (Solution) Let B; = (B},...,B{) be a BM? and f ¢ €42((0,00) x R%, R) as in

Theorem 5.6. Then the multidimensional time-dependent It6’s formula shown in Problem

16.3 yields
M} = f(t, B:) - £(0, Bo)—fth(s B,)ds
= FB) = 50,80~ [ (5555 B+ S80S (5, B,)) ds

t af Ay 1ok
- Bl,...,BY)dB".
S [

By Theorem 14.13 it follows that Mtf is a martingale (note that the assumption (5.5)

guarantees that the integrand is of class LQT!)

Problem 16.5 (Solution) First we show that X, = e'/? cos B, is a martingale. We use the time-

dependent It6’s formula from Problem 16.3. Therefore, we set f(t,z) = et/? cosz. Then
1 %) d?
—f(t, z) = —e?cosz, —f(t, z) = —e?sinz, ZL(t,z) = -e"?cosz.
Ox Ox?

Hence we obtain
Xt = €t/2 COSBt = f(t, Bt) - f(0,0) +1
tof af 10%f
- ("% (s B.)dB, f B. B 1
fo@m(s) " ((%( )+2a2( ))d“

t t/1 1
:—/ es/2sinBSdB5+f (—es/zcosBS——es/2cosBs) ds+1
0 0 \2 2
_ ¢ $/2 o
=- e’’*sin BsdBs + 1,
0

and the claim follows from Theorem 14.13.
Analogously, we show that Y; = (B; + t)e B74/2 is a martingale. We set f(t,z) = (z +
t)e /2. Then

g(t,x) =e U2 _ 1(a: +t)e 2,

8f (t .CU) e t/2 (x+t)e—x—t/2’

%(t,x) =272 4 (w4 t)e ™2,
x

By the time-dependent It6’s formula we have

Yy = (By +t)e Bt
= f(t,Bt) - £(0,0)
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t
= [ (P - (B )P dBy
t
+ /0 (e_BS_S/Q - %(Bs + s)e_BS_S/2 + %(—2€_BS_8/2 +(Bs + s)e_BS_S/z)) ds

= fot (e‘BS_S/Q—(Bs+s)e_BS_s/2) dB;.

Again, from Theorem 14.13 we deduce that Y; is a martingale.

Problem 16.6 (Solution) a) The stochastic integrals exist if bs/rs and Bs/rs are in £%. As
bs/7s| <1 we get

T T
b1 npomy = [ [E(bofro)]ds < [ 1ds=T< oo

Since bs/rs is adapted and has continuous sample paths, it is progressive and so an

element of L%. Analogously, |5s/rs| <1 implies 5,/rs € L%.

b) We use Lévy’s characterization of a BM!, Theorem 9.12 or 17.5. From Theorem
14.13 it follows that

ot fot bs/rsdbs, t — fot Bs/rsdfs are continuous; thus ¢t — W; is a continuous

process.
° fot bs/rs dbs, [Ot Bs/rs dBs are square integrable martingales, and so is W;.
e the quadratic variation is given by
(W)e=(b/reb),+(B/reB)
¢ ¢
= _/0 b2 [r2ds + A B2/r?ds
t 12 2
[,
0 r

S
¢
:/ ds =t,
0

i.e. (W2 —1)s0 is a martingale.
Therefore, W; is a BM!.

Note, that the above processes can be used to calculate Lévy’s stochastic area formula,

see Protter [7, Chapter II, Theorem 43]

Problem 16.7 (Solution) The function f = u+iv is analytic, and as such it satisfies the Cauchy—

Riemann equations, see e.g. Rudin [10, Theorem 11.2],
Uy = vy and Uy = —v,.
First, we show that u(bs, 3;) is a BM!. Therefore we apply Itd’s formula

u(btvﬁt) _u(b(]’lBO)
t t t
:A ux(bs”Bs)dbs‘*"/o‘ uy(bsaﬂs)d/@s"'%‘/o‘ (Uzm(bSaﬁs)+Uyy(bSaﬁs))ds
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t t
= A Uw(b&ﬁs)dbs“'/(; uy(b&ﬁs)d/@s;
where the last term cancels as g, = vy, and uyy = —vz,. Theorem 14.13 implies
o tu(by,Bi) = fot uz(bs, Bs) dbs + fot uy(bs, Bs) dBs is a continuous process.

° fot ug (bs, Bs) dbs, fot uy(bs, Bs) dBs are square integrable martingales, and so u(by, ;)

is a square integrable martingale.

e the quadratic variation is given by
(u(b, B))e = (uc(b, B) @ b)¢ + (uy (b, B) ® B)¢
t o, t o, ¢
=f0 ux(bs,,é’s)d8+[0 uy(bs,ﬂs)ds=f0 lds=t,

i.e. (u?(bs, Bt) — t)i0 is a martingale.

Due to Lévy’s characterization of a BM!, Theorem 9.12 or 17.5, we know that u(be, Bt)

is a BM!. Analogously, we see that v(b, 3;) is also a BM!. Just note that, due to the

2 2

2 _
- ytuz =1

Cauchy—Riemann equations we get from uj + uz =1 also v

The quadratic covariation is (we drop the arguments, for brevity):

(u,v); = 1 ({u+v) = (u—v))

1 t 9 t 9 t ) " ,
:Z(A (U$+U$) dS-l—A (Uy+’l)y) dS—[J (uac_vx) ds—L (Uy—vy) ds)
t
:_/0 (u$v$+uyvy)d5

t
= fo (—vyuy + uyvy) ds = 0.

As an abbreviation we write uy = u(by, 5t) and v, = v(by, 8¢). Applying 1t6’s formula to

the function g(ug,v;) = e/€4+1) and s < t yields

. t . t 1 t
g(ursve) = g(us,v) =€ [ glurv)dup +in [ g(urv)dvn =3 (€ +07) [ glurv)d,

as the quadratic covariation (u,v); = 0. Since |g| < 1 and since g(u,v¢) is progressive,
the integrand is in LQT and the above stochastic integrals exist. From Theorem 14.13 we

deduce that
t t
]E(/ g(ur,vr)du,«]lp) =0 and E(f g(ur,vr)dvr]lp) =0.

for all F € o(uy,v, : r<s)=F, If we multiply the above equality by e~ (€us+1vs) 1 1 oand

take expectations, we get

E(g(ut - Ug, UVt —US)ILF) =P(F) - %(52 + 172) fotE(g(ur - Ug, Uy —vs)]lp) dr.

=B(t) =3(r)

Since this integral equation has a unique solution (use Gronwall’s lemma, Theorem A.43),

we get

E(e!Eumu) (i) Ly = p(F) ez ()€ +n?)
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= P(F)e 2 (7983 (=’
=P(F) E(e*(mmu)) B(em(vemva)),

From this we deduce with Lemma 5.4 that (u(by, 8;),v(bs, B;)) is a BM2.

Note that the above calculation is essentially the proof of Lévy’s characterization theorem.
Only a few modifications are necessary for the proof of the multidimensional version, see
e.g. Karatzas, Shreve [5, Theorem 3.3.16].

Problem 16.8 (Solution) Let X; = [ o(s)dB;s + [, b(s)ds be an d-dimensional Ito process.
Assuming that f = u + 4v and thus u = Re f = %f+%fandv:1mf= %f+%fare
C2-functions, we may apply the real d-dimensional Ité6 formula (16.9) to the functions
u,v:RY> R,

f(Xe) = f(Xo)
=u(Xy) —u(Xp) + i(v(Xt) - U(Xo))
= fot Vu(Xs) o(s)dBs + fot Vu(Xs)'b(s)ds + % /Ottrace(a(s)TDzu(Xs)a(s)) ds
vi (fo Vo(X,) 0(s)dBy+ [ Vu(X,)b(s) ds + % [ race(o() DPu(X)o (5)) ds)
= [Ot Vf(Xs) o(s)dBs + [Ot V(X)) b(s)ds + % [Ottrace(a(s)TDQf(Xs)a(s)) ds,
by the linearity of the differential operators and the (stochastic) integral.

Problem 16.9 (Solution) a) By definition we have supp x c [-1,1] hence it is obvious that
for xn(z) = nx(nz) we have supp x,, c [-1/n,1/n]. Substituting y = nz we get

1/n 1/n 1
Joxe@yde= [ nxayde= [ x()dy =1

b) For derivatives of convolutions we know that O(f * x»n) = f * (Ox»). Hence we obtain

10" fu(@)] =1 f * (0"xn) (2)]
= ‘fB(m’l/n) F()0Fxn(z - y) dy‘

< swp |f@)] [ n 10 x(n( - )l dy

yeB(z,1/n)

= s [f@)] [ nt o)l a

yeB(z,1/n)

= sup  |f(w)|n* 10" X L1,
yeB(z,1/n)

where we substituted z = n(y — ) in the penultimate step.

d) For z € R we have

£ xa@) = £ @) = | (@) = F @)l =) dy
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<l sup |f(y) - f(@)]- Ixe

yeB(z,1/n)

= sup |f(y) - f(2)l.

yeB(z,1/n)

This shows that lim, e |f * Xn(z) = f(z)] =0, i.e. limpyeo [ * xn(z) = f(x), at all x

where f is continuous.

c) Using the above result and taking the supremum over all z € R we get

sup|f » xn(z) = f(z)| <sup  sup  |f(y) - f(2)].
zeR zeR yeB(z,1/n)

Thus limy, e | f * Xn = f|eo =0 whenever the function f is uniformly continuous.

Problem 16.10 (Solution) We follow the hint and use Lévy’s characterization of a BM!, The-
orem 9.12 or 17.5.
e ¢t~ [ is a continuous process.
e the integrand sgn B, is bounded, hence it is in L% for any T > 0.
e by Theorem 14.13 f3; is a square integrable martingale

e by Theorem 14.13 the quadratic variation is given by
. t t
B)e={ [[sen(BydB.) = [ (sen(B)ds= [ ds-t
t

i.e. (2 —t)s0 is also a martingale.

Thus, f is a BM!.
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17 Applications of 1t6’s Formula

Problem 17.1 (Solution) Lemma. Let (B, F;)ss0 be a BM?, f = (f1,..., f4), G L%,(/\T@)]P)
for all T'> 0, and assume that |f;(s,w)| < C for some C >0 and all s >0,1<j<d, and
we. Then

d  rt 14t
eXP(jZ;fO fj(S)dB§—§jZIf0 ff(s)ds), t>0, (17.1)

is a martingale for the filtration (Fy)so-

Proof. Set X; = Z;-lzl fot fi(s) dBJ - % Z;lzl fot fj2(s) ds. 1t0’s formula, Theorem 16.5, yields
X. dort 1tk L&t ox,
et—l:Z[eSfj(s)dB§—§Z[eSfj(s)ds+52[esfj(s)ds
d t d s k 1 d S 9 .
-5 [ew(X [ nerant- 13 [ #0ar) sy as]
j=170 k=10 21 J0

-3 [ T} Arrant = [ 2yar) royat

If we can show that the integrand is in L3(Ar ® P) for every T > 0, then Theorem 14.13

applies and shows that the stochastic integral, hence e**, is a martingale.

We will see that we can reduce the d-dimensional setting to a one-dimensional setting.
The essential step in the proof is the analogue of the estimate on page 250, line 6 from

above. In the d-dimensional setting we have for each k=1,...,d

E [‘ez;tlff Fi(r)dBl-3 24, [i f3(r)dr fk(T)|2] <C2T [62 2 [ 8 de]

=C’E

e2Jo £i() dBi]

J=1

< Clef[l (E [e2dfoT fjmdBi])”d.

In the last step we used the generalized Holder inequality

n n 1/px
[ éwdn<IT( [ 1o dn) ™ VGoropa) e [Loo)" s Tiy =1
k=1 k=1

with n =d and p; = ... = pg = d. Now the one-dimensional argument with df; playing the

role of f shows (cf. page 250, line 9 from above)
d [T J_1sd [T 2 2 d T i1\ 1/d
el 455 00 | o e 00
j=1
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< 0220C°T _ oo 0
Problem 17.2 (Solution) As for a Brownian motion one can see that the independent incre-
ments property of a Poisson process is equivalent to saying that Ny — N 1 Sfﬁv for all s <t,

cf. Lemma 2.10 or Section 5.1. Thus, we have for s <t

E(N; —t|TY) = E(N;, - Ny — (t - 5) | FV) + B(N, - 5| F)

Ny-NgLF

N
" E(Nt—Ns—(t-s5))+Ns—s

N¢-Ns~Ny_g

pull out

E(Ny—Ns)-(t—s)+ Ns—s
=E(N;_s) - (t-s)+Ns—s
= Ng—s.

Observe that
(Ny =)=t = (N, = Ny— (t—s) + (Ny = 5))* —t
= (Ny= Ny (t-5))"+ (Ny - )%+ 2(Ny = ) (N, = Ny —t + 5) — t.
Thus,
((Nt ~t)? - t) - ((Ns -5)%- 5)
= (Ny= Ny (t-5))  +2(Ny - 5)(Ny = Ny —t +5) - (£ - 5).
Now take E(---|FY) in the last equality and observe that N; — N, 1 F,. Then

B[((Ne-1)* =) = (N -5 - ) | 57]

N¢-NguF

év]E[(Nt—Ns—(t—s))z]+2E[(Ns—s)(Nt—Ns—t+s)‘?ﬁv]—(t—s)

N¢—Ng~

"B [(Nes - (t—s))z] +2(Ny =) B[ (N - Ny—t+5) | V] - (t-9)

pull out
N

* VNis+2(Ns—s)E(Ny—Ng—t+s)-(t—s)

N¢-NguF

=t-5+2(Ng—5)-0-(t-s)=0.
Since t = N; is not continuous, this does not contradict Theorem 17.5.

Problem 17.3 (Solution) Solution 1: Note that
Q(W(tj)eAj,Vj:1,...,n)z[H]lAj(W(tj))dQ
j=1
= [ T11a,(B(t) -t P38 ap.
j=1

By the tower property and the fact that %2 (O-38 ig a martingale we get

f [Tt4, (B(t)) - &t;) P28 T ap
j=1
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e (H La, (B(t)) - 6t;) P03
j=1

F,

)
9:'tn71 )

n-1
=B [T 1a,(B(t) - €t5) Pl 3801y
j1

n

=E|[]14,(B(t;) - &) E (egB(T)_wT

—_

=B |[]14,(B(t;) - &) eww—éf%n]
| =

n 1
- (H 14, (B(t)) - £t;) e P72
j=1

x E (]lA (B(tn) - &tn) eE(Btn)=B(tn-1))= 56 (tn—tn-1)

:Ttn—l )

_E (mn((B(tn) = Bt 1)) (b~ tr) + Btar) ~ Eba1)x

?tn—l)

B (nAn«B(tn) = B(tnor)) — E(tn — ta) + 1)

)

Now, since B(t,) — B(tn-1) 1L F;, , we get

E (]]-A (B(tn) _ gtn) eg(B(tn)_B(tn—l))_%SQ(tn_tn—l)

X ef(B(tn)_B(tn—l))_%§2(tn_tn—l)

y es(B(tn)—B(tn1)>—;£2<tn—tn1))

y=B(tn-1)—-&tn-1

A direct calculation now gives

E (]lAn ((B(tn) = B(tn-1)) = &(tn = tn-1) + y)ef(B(t")‘B(tn1))‘552(t"‘t"1))
=E (]lAn(B(tn —tn1) = E(tn —tno1) + y)egB(t”‘t"—l)‘552(%—%—1))

o1 2
f]lAn L= g(tn tn- 1)+y)e x_7£ (tn=tn- 1) 2n—tn-1 " dx

\/27T(tn —tn-1)

_—f]lA (& = E(tn — tno1) +y)e Tomimp @ ECata-))? g

\/27T(t —tn 1
) \/277(75” E—

=Ela,(B(ty) - B(ta-1) +v)

_ 1 2
[ 1, Gy T d

In the next iteration we get

El4,((B(t) = B(ta)) + (B(ta1) = Bltn-2) + ) JLa,, ((B(ta-1) = B(ta-s) +1))

=B 1a,((B(tn) = B(tn-2) + ) )14, , ((B(ta1) - B(ta2) +))
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etc. and we finally arrive at
QW (tj) € Aj,¥j=1,...,n) = EfllﬂAj( 11 (B(ty) - B(tx1)))-
j=
Solution 2: As in the first part of Solution 1 we see that we can assume that T' = ¢,. Since
we know the joint distribution of (B(t1),...,B(ty)), cf. (2.10b), we get (using o = to = 0)
Q(W(t) e Ar,...,W(ty) € 4y,)

) f [T 14, (B(t;) - &t) P70 g p
j=1

2
(zj-xj_1)

~ RS VR )yl R B S LA dzyi...dzy,
= /... ]lAv(.%"—ft‘)egz” 3870 T2 4dml Tt
[ '[]Q g\ J (27T)n/2 H?:l /t] _ tj—l

n (@j=2j_1)°
:f/ 1114, (2 -t;) e_% tjj—tjj_ll eZi=1 (5(%*%—1)*%52(trt]‘—1)) dzy ... dy
I I

tj - tj,1

eima 1)2
_[/ﬁ Ta. (z; - Ety) eié ( tjj—tjj-11) +5(‘”jzl’1)§52(tjtjl)] dzy ...dzy
- A J
i1

2m) 2 T /8 —
[ 2
_[fﬁ ]lA (x ~ é_t ) 6_2(t]-71tj,1) ((];j—xjfl)-*—f(t]‘—t];l)) ] d.%'l ce dl'n
- G\ J
i1l

(2m) 2T /1 — i

n r 1 2
s (Zj—Zj,l) le N dZn
= [... 14 (z))e TG D ] -
STt ES T
=P (B(t1) € A1,...,B(ty) € 4y).
Problem 17.4 (Solution) We have
]P(Bt +at <z, sup(Bs + as) < y)
s<t
= f 1 (Cooa] (Bt + at)]l(_ooﬂ] (supyq(Bs +as))dP
1
= / T (—o02] (Bt + at)]l(_oo’y] ( supy« (Bs + as)) E dQ
where Q = ;- P with g; = exp( —-abB; - %aQt)
1
= f T(—coa] (B + at)]l(,oo’y] (sup,e(Bs + as)) e@Bi+g 0’ dQ
= f 1(—oo,] (Bt + ozt)]l(_ooﬂ] ( SUp,<; (Bs + as)) e(Bi+at) e_% a®t dQ
irsanov 7104 aWi
Girnev -3 2t/ﬂ(_w7x](Wt)l(_oo7y](supsgtWS)e Wt 4@

_1.,2 ot
= [ () € QWi € dE, supg Wi < ).

where (Wy)s<: is a Brownian motion for the probability measure Q.

From Solution 2 of Problem 6.8 (or with Theorem 6.18) we have

Q( supg Wi <y, Wy € d§) = al_i)r_noo Q( infet Wy > a,sup,; Wi <y, Wy € d§)
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e 2 —e

V27t

and we get the same result for Q( supg Wy <y, Wy € dﬁ). Thus,

g2 (e-2y)?
o B[ ept]

]P(Bt +at < x, sup(Bs + as) < y)

s<t

x 1 &2 (6-2¢)2
= f 60‘56_%“"2 (e_f —e” 5 ) d
—o0 2t

€ 5*00&)2 £-2y—at 2
= 1 f (e_( 2t — eQO‘y e_( y2t : ) df
V2mt J-oo

1 z—at .2 20y z=2y—ot L2
:\/ﬂ ﬂe_sz—\e/ﬂ Vi e T dy
Tt J-oo mt J-oo
—at 2 —2y—at
= q;(xﬁ )_ o2y @(%)

Problem 17.5 (Solution) a) Since X; has continuous sample paths we find that
Tp=inf{t>0: X; >b}.
Moreover, we have

{;b s t} = {Supsgt Xs 2 b}
Indeed,

we{sup,y Xs>b} = Is<t: Xy(w)>b (continuous paths!)
— ;b(w) <t

— we{mp<t},
and so {;b < t} ) {supsgt Xs2 b}. Conversely,

we{mp<t) = Tp(w) <t
— Xz (@) 2b, Tp(w) <t

= sup Xs(w) > b
s<t

= we {supsthS 2 b},

and so {;b < t} c {Supsgt Xs 2 b}.

By the previous problem, Problem 17.4, P(sup, X = b) = 0. This means that

—

IP(Tb > t) = P(supsths < b)
= IP(supsgt Xs < b)
=P (Xt <b, supg X < b)
2 o()- ()

= @(% —04\/1_5) —eQabq)( - % -« t).
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Differentiating in ¢ yields

d - _ 2abf b o 1 b b o b
—q P> ) = (5 = 5% ) @' - avi) + (52 + 557) (G - V)
RN T o ) - (oran)? b 0 | _G-an?
—m(e (T\/Z_T\/Z)e “ *(m*m)e )
_ 1 b e _(bmat)? b a _Gmaty?
__1%((m_ﬁ)e * +(m+27z)6 )
1 20 (b-at)?
= —8 2t
V271 20/t
b _ (b-at)?
= (&} 2t
27t

b) We have seen in part a) that

P(7p>t) = @(b*—\/‘%t) - ehb@(%)

P(—00) - 2P (-00) = 0 if >0
= 19(0) - e"@(0) =0 if =0

P(00) - e2PP(00) =1 -2 if a<0

Therefore, we get

—~ 1 ifa>0
IP(Tb<oo):
e2ob if o < 0.

Problem 17.6 (Solution) Basically, this is done on page 260, first few lines. If you want to
be a bit more careful, you should treat the real and imaginary parts of exp[i{Br] =

cos(&{Br) +isin({By) separately. Let us do this for the real part.

We apply the 2-dimensional Ito-formula to the process Xy = (¢, B;) and with f(¢,z) =

cos(fx)etf2/2 (see also Problem 16.3): Since

S 2
O f(t,z) = 5 cos(&x)e'® /2

0, f(t,x) = ~Esin(Ex)ets 2
02F(t,2) = —€2 cos(Ex)eE /2
we get
cos(éBr)e™ 2 -1
- % OTcoS(st)eS§2/2 ds—¢& ATSin(ng)esg2/2 4B, - %52 fOTcos(gBS)eSE2/2 N
== fo Csin(¢By) eI dB,

Thus,

T
cos(¢Br) = e TEN2 _ 1 /0 sin(st)e(S_T)52/2 dBs.
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Since the integrand of the stochastic integral is continuous and bounded, it is clear that
it is in L3(Ar ® P). Hence cos(¢By) € H7..

The imaginary part can be treated in a similar way.

Problem 17.7 (Solution) Because of the properties of conditional expectations we have for s < ¢
E (M, |H,) = E (M| 0(Fs, Gs)) "5~ E (M, | F5) = M,

Thus, (M, Hy)eso is still a martingale; (By, Hy)so is treated in a similar way.

Problem 17.8 (Solution) Recall that
7(s) =inf{t >0 : a(t) > s}.
Since for any € >0
{t:a(t)zsc{t:a(t)>s—€ec{t:alt)>2s-¢€}

we get
inf{t : a(t) > s} >inf{t : a(t) >s—e} >inf{t : a(t) > s-€}

and

inf{t : a(t) > s} > liTr{)linf{t ca(t)y>s—e€} > liTIglinf{t sa(t) > s— e}

=limeyo 7(s—€)=7(s-)

Thus, inf{t : a(t) > s} > 7(s—). Assume that inf{t : a(t) > s} > 7(s—). Then
a(7(s-)) < s.
On the other hand, by Lemma 17.14 b)
s—e<a(r(s—€)) <a(r(s—)) <s Ve > 0.

This leads to a contradiction, and so inf{t : a(t) > s} < 7(s-).
The proof for a(s—) is similar.
Assume that 7(s) > ¢. Then a(t—) =inf{s >0 : 7(s) >t} <s. On the other hand,

a(t-) < s = Ve>0:a(t—e)<slg§)V6>0:T(s)>t—e = 7(s) > t.

Problem 17.9 (Solution) We have

{{(M)e<sp = (WH{(M)e<s+1/n} = (V{(M)2s+1/n}°

n>1 n>1
17.14 c A.15
= m{TS+1/n_<s} e 7, LF Fr+e
) nel nzl St

As F; is right-continuous, &"TS + = ?TS = G5 and we conclude that (M), is a G; stopping

time.
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Problem 17.10 (Solution) Solution 1: Assume that f € €2, Then we can apply Ité’s formula.

Use Itd’s formula for the deterministic process X; = f(¢) and apply it to the function z®

(we assume that f > 0 to make sure that f* is defined for all a > 0):

a a _ trd a _ t a—1
== [ 7] A6 = [T @ ds),
This proves that the primitive [ f* 1 df = f%/a. The rest is an approximation argument
(f € C! is pretty immediate).

Solution 2: Any absolutely continuous function has an Lebesgue a.e. defined derivative f’
and f = [ f'ds. Thus,

[ e = [ e (syas= [ té%f%s)ds:[f“;s)] S1O-1O)

0 a

Problem 17.11 (Solution) Theorem. Let B; = (B},...,BY) be a d-dimensional Brownian

136

motion and fi,...,fq¢€ L%()\T ® IP) for all T >0. Then, we have for 2<p< oo

T d p/2
(f Sl a)
k=1

with finite comparison constants which depend only on p.

E

<E [sup
t<T

> [ 1uts)ast

p] (17.2)

Proof. Let X; =Y, fot fx(s) dBE. Then we have
(- (2 [ nerant 3 [ neast)
-S{ ) feast, [ ae)az)
kzl:[o fe(s)fi(s)d(B*, B'),
> [, fi)ds

since dB¥dB'. = d(B*, B'), = 6}, ds.

With these notations, the proof of Theorem 17.16 goes through almost unchanged and we
get the inequalities for p > 2. O

Remark: Often one needs only one direction (as we do later in the book) and one can use

17.18 directly, without going through the proof again. Note that

d rt kp d " . P
kZI/O fi(s) dBg s(kZl fo fk(s)st)
d t P

scd,pl;l fo fuls) dBE
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Thus, by (17.18)

d t p t
]E[sup Z/ fi(s)dB" ]écdvaE[sup fr(s)dBE
t<T |f=1 70 k=1 t<T 140 ]
d T /27
<aa 3 ([ 1R )
T d p/27
<aanB|( [ LR as) |
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18 Stochastic Differential Equations

Problem 18.1 (Solution) We have
dX, = b(t)dt + o(t) dB,

where b, o are non-random coefficients such that the corresponding (stochastic) integrals

exist. Obviously,
(dX;)? = o%(t) (dB;)? = o*(t) dt

and we get for 0 < s <t < oo, using [t6’s formula,
A A t t
Xt _ 16X _ [ ife’éx" b(r)dr + [ ife’éx" o(r)dB,
1 rt . .
-5 f 26X 62 (1) dr.
Now take any F € F, and multiply both sides of the above formula by e ¢Xs1 . We get
_ t t
XX o -1 = ] ice€(Xr=Xo)q b(r)dr + f ige € (Xr=Xo)q o(r)dB,
1 rt . .
) f 52615(XT_X‘“)11F 02(7”) dr.
Taking expectations gives
. t .
B (€00 ) < P(R) + [ gl (eSO, o) dr
1 rt .
—_— / §2 = (ezE(X"_XS)]lF) 02(7‘) dr
2 Js
t 1 .
=P(F)+ f (ifb(r) - ¢ 02(7“)) E (elg(XT_XS)]lp) dr.
s 2
Define ¢ (&) = E (eig(xt—xs)]lF). Then the integral equation
b Lo o
002(8) =P(F)+ [ (i60(r) = 58 0*(1)) &)
has the unique solution (use Gronwall’s lemma, cf. also the proof of Theorem 17.5)

¢s:(&) =P(F) e’ff_:b(s)ds_%@fst o2(r) dr

and so
E (eiﬁ(Xt—XS)]lF) _ IP(F) eisfst b(r) dr—%§2 -[st a2(r) dr‘ (*)

If we take in (*) F'=Q and s =0, we see that

2 ¢ 2 1 ¢ 2
X~ N(uo), o= [ brydr,  of=5 [Ty
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If we take in (*) F = Q then the increment satisfies Xy — X ~ N(s — s, 02 —02). If F'is
arbitrary, (*) shows that
Xt - Xs 1L 3:57

see the Lemma at the end of this section.

The above considerations show that

n n t; ts
B e &0 ) < TTexp (iﬁ [ oyar-5e [ Ug(r)d’"),
ti—1 ti_1

j=1 J
fe. (X4, Xe, — X4yy.-., Xp,, — X4, ,) is a Gaussian random vector with independent com-
ponents. Since X;, = Zé?:l (Xi, = Xi,,) we see that (Xy,,...,Xy,) is a Gaussian random

variable.
Let us, finally, compute E(X;X};). By independence, we have
E(X,X,) =E(X?) +EX,(X; - X,)
=EB(X3) +EX,E(X; - X,)
“E(X?)+EX,EX; - (EX,)?
VX, +EX,EX,

:_[OSJQ(T)drvLfosb(r)drfotb(r)dr.

In fact, since the mean is not zero, it would have been more elegant to compute the

covariance

COV(X3>Xt) = E(Xs - .Us)(Xt - Nt) = E(Xth) “EX;EX =V X, = ASUQ(T) dr.

Lemma. Let X be a random variable and F a o field. Then

E(e1p)=Ee** P(F) VéeR = X 1 7.

Proof. Note that eMF = ¢ p + 1 pe. Thus,

E (eifX ]lpc) E (eifX) -E (eigX ]lp)
E () - E (%) P(F)
= (%) P(F°)

and this implies
E (eZEX einnF) = (eZEX) E (einﬂF) VE meR.

This shows that X 1L 1 and X 1 F for all F € F. ]
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Problem 18.2 (Solution) a) We have At =2"" and
AXp(th-1) = Xn(te) = Xn(tr-1) = =5 Xn(te-1) 27" + B(ty,) — B(tg-1)
and this shows

Xn(tr) = Xn(te-1) = 5 Xn(tr-1) 27" + B(t) - B(te-1)
= (1-27""") X (te-1) + B(t) = B(tp-1)
S (-2 [(1- 27" X (toa) + Bltiot) - Bltes)] + [B(t) - B(t-)]

= (1-27""5 X, (to) + (L =27 [B(t1) - B(to)] +... +
+(1-27""N)[B(tg-1) - B(tr-2)] + [B(tr) - B(te-1)]

k—
(2T A S (-2 Y[ Bt ) - Bl )]
=1

Observe that B(t;) - B(tj-1) ~ N(0,27") for all j and A ~ N(0,1). Because of the

independence we get
- —n— k-1 o ives
Xn(tn) = Xn(k27") ~ N(Ov (1-27" 1)2k + Zj=1 (1-27" 1)21 .92 n)
For k =2""" we get t), = % and so

Xa(3) ~N(0, (12 + 3 -2 )P o),

Using
lim (1-2"1)?" =¢72
n—oo
and
2nz_:1(1_2—n—1)2j.2—n_ 1_(1_2_n_1)2n ‘2—7’1,_ 1_(1_2_n_1)2n 1_ —%
& T (12 1)? T 122 e €

finally shows that Xn(%) n»ioo) X ~N(0,1).
b) The solution of this SDE follows along the lines of Example 18.4 where a(t) = 0,
B(t) = —%, 0(t) =0 and v(¢) = 1:
dX; =i Xpdt = X7 =¢'l?
Zi=e? Xy, Zo=X,
dZ, = ' dB, = 7, = Z0+f0tes/2dBS

t
Xt:e_t/2A+e_t/2f e*? dB,.
0

For t = % we get

/

1/2
Xyp=Ae My et fo *2 4B,
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= Xyjo~ N(O, e M2y 871/2f01/2 e’ ds) =N(0,1).
So, we find for all s <t
C(s,1) =E X, X, = o2 2| A2 + e_S/Qe_t/QE(foser/z B, fote“/Q dBu)
= ()2 | ~(s+0))2 [Ser dr
_ e—(t—s)/Z. ’
This finally shows that C(s,t) = e *=5I/2,

Problem 18.3 (Solution) Since X} is such that 1/X} solves the homogeneous SDE from Ex-
ample 18.3, we see that

Xe =exp(—f0t(5(s) _152(s)) ds)exp(— [0t5(s)st)

(mind that the ‘minus’ sign comes from 1/X7).

Observe that X7 = f(I},I?) where I; is an It6 process with
t
1= [ (8()-48%(9)) ds
) t
2= —fo 5(s) dBs.
Now we get from It6’s multiplication table
difdi} =di}di? =0 and dI?dI? = 5(t) dt
and, by It6’s formula

2 )
dX7 = o1 f(I}, 1) I} + o f (I}, 17 ) dI} + 5 Y Ok dI} dIf
4.k=1
= X7 (dI} +dI} +1dI7 d1})
= X7 (-B(t)dt+ 3 6°(t) dt - 5(t) dB, + 3 6°(t) dt)
= X7 (=B(t) + 6%(t)) dt — X7 5(t) dB.

Remark:

1. we used here the two-dimensional It6 formula (16.6) but we could have equally well

used the one-dimensional version (16.6) with the It6 process I} + I2.

2. observe that It6’s multiplication table gives us exactly the second-order term in

(16.6).
Since
dZ; = (a(t) =S X2 dt + ()X dB; and X, = Z,/X?
we get
Xe= 5 (X0 [ (@) 20Nz ds [ o) X dB,).
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Problem 18.4 (Solution) a) We have X; = e X, + [/ 0e7#(=*) dB,. This can be shown in

three ways:

Solution 1: you guess the right result and use Itd’s formula (16.5) to verify that the

above X; is indeed a solution to the SDE. For this rewrite the above solution as
t
ALY, = X + fo oe® dB, —> d(P'X,) = 0eP dB,.

Now with the two-dimensional It6 formula for f(z,y) = xy and the two-dimensional

It6-process (e, X;) we get
d(e’'X,) = BXePdt + Pt d X,

so that
BX;eltdt + et dX, = 0Pt dB, < dX;=-BX;dt+0dB;.

Admittedly, this is unfair as one has to know the solution beforehand. On the other
hand, this is exactly the way one werifies that the solution one has found is the

correct one.

Solution 2: you apply the time-dependent It6 formula from Problem 16.3 or the 2-

dimensional It6 formula, Theorem 16.6 to
t
Xt =u(t,I;) and I;= f ?*dB, and wu(t,z) =Xy +0en
0
to get—as dt dB; = 0—
dX; = Opu(t, I) dt + Opu(t, I,) dI; + 3 02 u(t, By) dt.

Again, this is best for the verification of the solution since you need to know its form

beforehand.

Solution 3: you use Example 18.4 with «(t) =0, f(t) = -8, v(t) = o and §(¢t) = 0.
But, honestly, you will have to look up the formula in the book. We get

dX? = BXPdt, XO=1 = X7 =eP;
Iy = Bt Xy, Zy=Xg=¢&=const.;
dZ; = o€’ dBy;
t
Zt:a/ ¢ dB, + Zo:
0

t
Xt:e_5t£+e_6t0/0 eﬁSst, t>0.

Solution 4: by bare hands and with It6’s formula! Consider first the deterministic

ODE
t
xtzaco—ﬁfo Tsds

143



R.L. Schilling, L. Partzsch: Brownian Motion

which has the solution z; = g e‘ﬁt, i.e. e’'z; = zg = const. This indicates that the

transformation

Y, =X,
might be sensible. Thus, Y; = f(¢, X;) where f(t,z) = e*z. Thus,
O f(t,x) = Bf(t,x) = Bae®, 8, f(t,2) =€, O fau(t,z) =0.
By assumption,
dX; = -BX,;dt +0dB; — (dX;)* = 0% (dB,;)? = 0% dt,
and by Itd’s formula (16.6) we get
Y -Yo

= fot (fi(s,Xs) = BXsfu(s, Xs) + 2 0% fru(5,X,) ) ds + fOtJfI(S,XS) dB;

=0 =0

_ fotafz(s,Xs)st.

So we have the solution, but we still have to go through the procedure in Solution 1

or 2 in order to verify our result.

b) Since X, is the limit of normally distributed random variables, it is itself Gaussian (see
also part d))—if £ is non-random or itself Gaussian and independent of everything

else. In particular, if Xg =& = const.,
Xy~ N(ee, 0% [T e ds) =N (e e, £(1-e)).
Now

C(s,t) =E X, X; =e Pt 2y — o’ e P (25 - 1), t>s>0,

25 ¢

and, therefore

C(s,t) =Pl 2y 7

25 (e_mt_‘s' - e‘ﬂ(t”)) for all s,t>0.

¢) The asymptotic distribution, as t - oo, is X ~ N(O,Uz(Qﬁ)_l).

£ (oo 00
l

n ts
( iy Aje Bt]§+wZ)\eBt .[ojeBSdBS])
7=1

7=1

d) We have

O'
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where
t.
7]j=>\j€_’3tj, }/j=[OJ€ﬁSdBS, t0=0, Yb=0.

Moreover,

n n n

Z Z Vi = Yie1) Do mj

j=1 k=1 j=k
and

t
Yi—Ypq = f * s dBs ~N(0, (28)7L (2Pt - e%t’“*l)) are independent.

te-1

Consequently, we see that

i)

n 2 n 2
:exp[ ( Ve) ];glexp[_z_ﬁ(e%tk - ) (X e ™) ]
:exp[ ( /\e*@t){1+e2’3t1—1}]><
O (] 2Bt} (S Bt )
xgexp[ 45(1 e k kl) (Zj:k)\]e i k)]
2 2
= exp [_Z_ﬁ( Z?zl /\je_ﬁ(tj_tl)) :| x
n 2 2
T (1 e 2BCtr-) ) (S Bt —t)
xgexp[ 45(1 e k kl) (Zj:k)\]e i k)]

Note: the distribution of (X4, ..., Xy, ) depends on the difference of the consecutive

epochs t1 <...<t,.

e) We write for all £ >0
Xt = eﬂt Xt and Ut = e'BtUt

and we show that both processes have the same finite-dimensional distributions.

Clearly, both processes are Gaussian and both have independent increments. From
Xo=X0=0 and Uy=Uy=0
and for s <t

~ - t
Xt—XS:cr/ ¢ dB,
S

~N(0, G5(e* - ™)),
U, - U, = %(B(ewt ~1) - B(e** - 1))
N %B(elﬁt _6255)
~N(0, g5(e* - 7))

we see that the claim is true.
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Problem 18.5 (Solution) We use the time-dependent It6 formula from Problem 16.3 (or the
2-dimensional It6-formula for the process (¢, X;)) with f(t,z) = e [ %. Note that the

parameter c is still a free parameter.

Using It6’s multiplication rule—(dt)? = dt dB; = 0 and (dB;)? = dt we get
dX; = b(Xy)dt + o(X;)dB, = (dX;)* = d(X), = 0%(X,) dL.
Thus,

dZy = df (£, X;) = Ouf (£, X)) dt + O, f (£, X3) dXy + 2 D2 (¢, Xy) (dXy)?
1 ct U,(Xt)

X 1
:ceCt[ t ﬂdtJreCt dX;-—-e 2—02(Xt)dt
o a(y) o(Xt) 2 o*(Xy)

X X 1
cett [ "W gyt YD et Lo grxyar
o o(y) a(X¢) 2

Xe 1 b(X
= et cf WS (X)) + (X4) dt + e dB;.
o o(dy) 2 o(Xy)

Let us show that the expression in the brackets [---] is constant if we choose ¢ appropriately.

For this we differentiate this expression:

Al 1 M@ e L b
dm[/(; o(dy) 2 ()+a(x):| o(z) dx[Q ( U(x)]

e [Lad ba)
~o(x) [2 (@) da:a(x)]

_ c—o(x la"m—ib(x)
‘o<x)( ()[2 (=) dm(sc)])

=const. by assumption

This shows that we should choose ¢ in such a way that the expression ¢ —o - [---] becomes

Zero, i.e.

_ 1, d b(x)
c—a(x)[§a (x)_%a(x)]

Problem 18.6 (Solution) Set f(¢,z) =tz. Then

orf(t,x) =z,  Ouf(t,x)=t,  O*f(t,xz)=0.

Using the time-dependent It6 formula (cf. Problem 16.3) or the 2-dimensional It6 formula

(cf. Theorem 16.6) for the process (t, B;) we get

dXy = 0uf (t,By)dt + O, f (t, By) dBy + 3 92 f (¢, By) dt
= Bt dt+tdBt

X
:Ttdt+tdBt.

Together with the initial condition Xy = 0 this is the SDE which has X; = tB; as solution.
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The trouble is, that the solution is not unique! To see this, assume that X; and Y; are

any two solutions. Then

X, Y Z
dZt::d(Xt—Yt):dXt—dYt:(Tt—?t)dt:Ttdt, Zo=0.

This is an ODE and all (deterministic) processes Z; = ct are solutions with initial condition

Zp = 0. If we want to enforce uniqueness, we need a condition on Zj. So

X
dXFTtdmtdBt and ixt

!
=z
dt ‘t:O 0

will do. (Note that ¢B; is differentiable at ¢ = 0!).

Problem 18.7 (Solution) a) With the argument from Problem 18.6, i.e. Itd’s formula, we get

for f(t,x) =z/(1+1)

x 1 2
t - 2 f (1, = ) St =u.
And so
dU, = Bt 1 dB;
(1+1)2 1+t
—idt LdBt
1+¢ 1+¢

The initial condition is Uy = 0.

b) Using It6’s formula for f(x) = sinz we get, because of sin? z + cos?x = 1, that

dV; = cos BydB; -  sin B, dt

=\1-sin? B,dB, - 1 sin B, dt
=\/1-V2dB, - i V,at

and the initial condition is V4 = 0.

c¢) Using It6’s formula in each coordinate we get

d(Xt) _ (—asth)dBt N 1(—ac?th) gt
Y: bcos By 2\ -bsin B;

-2bsin B
:( 7 bsin t)d 1(acoth)dt

gacoth " 2\bsin B,
-2Y, 1/X.

=( R t)dBt——( t)dt.
Xt 2\Y;

The initial condition is (Xo, Yo) = (a,0).

Problem 18.8 (Solution) a) We use Example 18.4 (and 18.3) where we set

a(t) =0, B(t) =0, v(t) =0, i(t) =o.
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Then we get

dX? = 0% X; dt - o X; dB;
dZ; = bX; dt

and, by Example 18.3 we see
t,, ) ¢
axy :Xé’exp(f (0 - 30 )ds—f O'dBS)
0 0
= Xgexp (30%t -0 By)
t
7 = f bX° ds
0
Thus,
t
Zy = f bX; e27°57Bs g
0
Zy

t
_1 .2 1 2.
= be 2Ut+OBtf 620—50'35(15.
0

X; =
Xy

We finally have to adjust the initial condition by adding Xy = z¢ to the X; we have

just found:

= X;=Xp+ be~3 o troBe ft e39°5-0Bs g
0
b) We use Example 18.4 (and 18.3) where we set
a(t) =m, B(t) = -1, ~(t) = o, 5(t) = 0.
Then we get

dX7 = X? dt
dZy =mX? dt + o X{ dBy

Thus,

o _ o t
Xt —Xoe

t t
Zt:f mesds+0/ e’ dB,
0 0

t
:m(et—1)+0_[0 e® dBs

Z

X =
t Xf

t

=m(l-eY)+o f e* 1 dB,
0

and, if we take care of the initial condition Xy = zg, we get

t
= Xt:x0+m(1—e_t)+af e* "t dB;.
0

Problem 18.9 (Solution) Set

b(z)=V1+z2+iz and o(z)=V1+az2
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Then we get (using the notation of Lemma 18.8)

"(2) = an nsz—la'xz
o' (x) 4 w@) =20y -30 @) =1

T
V1+a?

Using the Ansatz of Lemma 18.8 we set

d(z) = fom % =arsinhz and Z; = f(Xy) = d(Xy).

Using Ito’s formula gives

dZ; = 0, f(Xt)dXt+ D2f(Xy) 0% (Xy) dt

G(X ) ———dX; + 3 (L) (X)) o (Xy) dt

= (1 i %)dt+d3t+ (—L) (1+Xx})at

1/1-4-_)( (1+Xt2)3/2

=dt+ dBt,
and so Z; = Zy +t + By. Finally,

X, =sinh(Zy+t+ B;) where Zj = arsinh Xj.

Problem 18.10 (Solution) Set b = b(t 2),bo = b(t,0) ete. Observe that [b] = (X;]b;(t,2)[?)"

and o] = (X, lojk(t,z) ) are norms; therefore, we get using the triangle estimate

and the elementary inequality (a +b)? < 2(a? +b?)

[61% + o] = b= bo +bo[|* + llo = 70 + 00
<2[b = bo||* + 2[o = o0]* + 2[bo|* + 2] oo
<2L2Jz* + 2[bo | + 2|00 |
<2L2(1+[a])? +2([lbo|* + oo *) (1 + [])?
2(L% + [lbo]* + oo *) (1 + 2])*.

Problem 18.11 (Solution) a) If b(x) = —e” and X§ = = we have to solve the following
ODE /integral equation

This shows that

lim X} = lim log

I—>00 IT—>00 ( t+e*

1
):logg = —logt.

This means that Corollary 18.21 fails in this case since the coefficient of the ODE

grows too fast.
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b) Now assume that |b(z)|+ |o(z)| < M for all z. Then we have

t
‘fo b(X,)ds| < Mt.

By Itd’s isometry we get

]E“_[Ota(Xf)st

2 t
] - ]E[/O |a2(X§)|ds] < Mt
Using (a +b)? < 2a? + 2b% we see

E(|X? - %) <2 Ufotb(Xs) ds

<2(Mt)? +2M%t

2]+2E[‘/0ta(X§)st

]
= 2Mt(t +1).

By Fatou’s lemma

E( lim |X} —xlz) < lim B(IXF - 2%) <2M%t(t +1)
|00 o]0

which shows that |X}’| cannot be bounded as |z| - oo.

¢) Assume now that b(z) and o(z) grow like |z[P/? for some p € (0,2). A calculation as

above yields

’fotb(Xs)ds

and, by Ito’s isometry

Cauchy

t t
< t[o |b(XS)|2ds<cpth (1+|X,[P) ds

2
Schwar:

E[Uota(xg)st 2] :E[f0t|02(X§)|ds] Sc’fOtE(1+|Xs|p)ds.

Using (a +b)? < 2a? + 2b and Theorem 18.18 we get
t t
E|X? - af < 20pt[0 (1+B(|X.[)) ds +2¢ [0 (1+B(|X.)) ds
t
<erp+ iy /(; |z|P dt
=crp ey ol

Again by Fatou’s theorem we see that the left-hand side grows like |z[* (if X7 is
unbounded) while the (larger!) right-hand side grows like |z[P; p < 2, and this is

impossible.

Thus, (X}), is unbounded as |z| - co.
Problem 18.12 (Solution) We have to show

|z -yl L
(L+|zD (L +]y)

Ty
2 [yf?
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— | M i
(L+]a])? (1 +[y[)?
— 2~ 26w, y) +lyI* 2l 2Axy) IR
O ) Qe 7 b 1 7 R (]
S S O |
Plyl? - L+ fe)2(T+[y))?) =P Jyl? (U [2)2(1+Jy])?
1 1

) ey (L 1
FENE <1+|x|>2<1+|y|>2)<("*'y')(|x|2|y|2 <1+|x|>2<1+|y|>2)'

By the Cauchy-Schwarz inequality we get 2(x,y) < 2|z|-|y| < |2|* +|y|?, and this shows that

L Y

2> [yf?

— 2<w,y)(

— 2(»”6,3/)(

the last estimate is correct.
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19 On Diffusions

Problem 19.1 (Solution) We have
1 d d
Au=Lu= 5 Z aijaﬁju + Z bzazu
ij=1 i=1
and we know that L:C® - C. Fix R>0 and i,j € {1,...,d} where z = (x1,...,24) € R?
and x € € (R?) such that XlB(o,r) = 1-

For all u, x € C% we get
1
L(gu) = 5 3 aij0:0;(¢u) + 3, bidi(¢u)
0] i
= % Z aij(aiaj(b +0;05u + 0;00;u + &ua]d)) + Z bz(uﬁlgﬁ + (;Sazu)
i i

= (bLu + ’U,L(Z) + Z aij&d)aju
0,J

where we used the symmetry a;; = aj; in the last step.

Now use u(z) = z; and ¢(x) = x(z). Then uy € C°, L(ux) € € and so

L(ux)(x) = b;i(x) for all |z| <R == bilg(o,r) continuous.

Now use u(z) = z;x; and ¢(x) = x(z). Then uy € €, L(uy) € € and so
L(ux)(x) = a;j + zjbi(x) + x;bj(x) for all |z| < R = ayj|p(o,r) continuous.
Since R > 0 is arbitrary, the claim follows.

Problem 19.2 (Solution) This is a straightforward application of the differentiation Lemma
which is familiar from measure and integration theory, cf. Schilling [11, Theorem 11.5, pp.
92-93]: observe that by our assumptions

O*p(t,z,y)

<C(t) forall z,yeR?
9,00 (t) forall x,ye

which shows that for u e C2°(R?)

O*p(t,z,y)

Ox;0xy, <O luly)l e L'(RY) (*

~—

u(y)

for each ¢t > 0. Thus we get

o o
tx, dy = [ t dy.
520 ] POE0 A= [ 5= ) u)dy
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Moreover, (*) and the fact that p(t,-,y) € Coo(R?) allow us to change limits and integrals

to get for x - xp and |z| - oo

2
1i lim
xir?ofaxa p(tz,y) uly) dy = f 11‘03:E8 Pt y)uly) dy

82
= t d
92,00 p(t,zo,y) u(y) dy

— T, maps €°(R?) into €(R%);
52
¢ d f t, dy =0
mmfa Dor p(t,z,y) u(y) dy = R ( z,y) u(y) dy
=0
— T} maps C°(RY) into Coo (R?).

Addition: With a standard uniform boundedness and density argument we can show that

T; maps Co into Coo: fix u € Coo (RY) and pick a sequence (uy), c € (RY) such that
lim |u—up|o = 0.
n—oo
Then we get
|Tiu = Tyunfoo = [Tt (u = un) oo < [t = un oo oo 0
which means that Tiu,, - Tiu uniformly, i.e. Tiu € Coo as Tiuy, € Coo

Problem 19.3 (Solution) Let u € C2. Then there is a sequence of test functions (uy), c €
such that [u, — u 2y - 0. Thus, u, — v uniformly and A(up — ) - 0 uniformly. The

closedness now gives u € D(A).

Problem 19.4 (Solution) Let u, ¢ € €°(R?). Then
(LUKJS)L?:izj:fRdaz’jaz‘aju'¢dl‘+%:[Rdbjaju-¢dm+[Rdcu-gbdx
int:byZ[Rdu-&@j(aijqb)dx—;[Rdu-aj(bj¢)d$+[}Rdu-cgbdm

parts ’L]
= <’U,, L*(b)L2
where

L* (2. D)(x) = 305 (a;(2)6(2)) ~ 3205 (b5 (2)6(x)) + e(2)(x).
) J

Now assume that we are in (t,z) € [0, 00) x R%—the case R x R? is easier, as we have no
boundary term. Consider L + d; = L(x, D,) + 0; for sufficiently smooth u = u(¢,x) and
¢ = ¢(t,x) with compact support in [0, c0) x R, We find

,/(;oo/];{d(L—i_at)u(t?x)'¢(t7$)d$dt
:/O'W/]Rd Lu(t,x)-¢(t,x)dwdt+£w/]Rd du(t,z) - o(t,z) du dt
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:fow.[]Rd Lu(t,x).¢(t,x)dxdt+—[}{d/(;ooatu(t,m).dt,m)dtdx

= 7 four) oty arars [ (sl - [T a2 o0 ) e

:fooo[]RdU(t,a:).L*qb(t,x)da:dt—/Rd (u(o,x)¢(0,x)+fomu(t,x).a@(t’x)dt)dx.
This shows that (L(x7DfE) + at)* = L*(JL‘,DI) -0 —5(0,1‘).

Problem 19.5 (Solution) Using Lemma 7.10 we get for all u € € (R)

L puz) = TLLC, DYu(z)

dt
— %fp(t,x,y)U(y)dwfp(t,x,y)L(y,Dy)u(y)dy
- f%p(tax7y)u(y)dy:[p(t,w,y)L(y,Dy)u(y)dy.

The change of differentiation and integration can easily be justified by a routine application
of the differentiation lemma (e.g. Schilling [11, Theorem 11.5, pp. 92-93]): under our
assumptions we have for all e € (0,1) and R >0

d

sup sup o

te[e,1/e] |z|<R

p(t,z,y) u(y)| < C(e, R) [u(y)| e L' (RY).

Inserting the expression for the differential operator L(y, Dy ), we find for the right-hand
side

fp(t,x,y) L(y, Dy)u(y) dy

1 & 0u(y) d ou(y)
== p(t,z,y)-a; dy + p(t,z,y)-b; d

2j;1f (t,2,y) J"“‘(y)ayjayk y ];f (t.z,y)bj(y) oy, W
int. by 1 d 82 d 8

=Y - a; p(t,x,y) Ju(y) dy + —\b;(y) -p(t,z,y) Ju(y) d
AP 55 o 40k 0) (t.9) Juy) dy % |/ 3, (0@ p(t2.9) )uw) dy

- [ 1@ Dy)p(t,z ) uy) dy
and the claim follows since u € C°(R?) is arbitrary.

Problem 19.6 (Solution) Problem 6.2 shows that X; is a Markov process. The continuity of
the sample paths is obvious and so is the Feller property (using the form of the transition

function found in the solution of Problem 6.2).

Let us calculate the generator. Set I; = fot Bsds. The semigroup is given by
Tou(z,y) = E*Y u(By, 1) = Eu (B, +z, fot(Bs +x)ds+y) =Eu(By+x, I + tz +y).

If we differentiate the expression under the expectation with respect to t, we get with the

help of Ito’s formula

du(By + x, I; + tx +y) = Opu(By + x, I + tx +y) dB;
+0yu(By + x, I + tx +y) d(I; + tx)
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1
+ 58£U(Bt +x, I +tx+y)dt

= 6xU(Bt +x, It +tx + y) dBt
+0yu(By +x, Iy + to +y)(By + ) dt

+ %aiu(Bt +x, I +tx+y)dt
since dBsdI; = 0. So,
Ew(B, +a,I; + tr +y) - u(z,y) = f [0,u(Bq + 2, I, + 53+ y) (Bs + )] ds
2/ u(Bs +x, I +sx+y)]ds
Dividing by ¢ and letting ¢ - 0 we get

Lu(a:, y) = $8y’u,(l‘, y) + % 8;3“(337 y)

Problem 19.7 (Solution) We assume for a) and b) that the operator L is more general than

written in (19.1), namely

1 d d )
L) = 3 32 a5(@) 55D 4 55,0 2 s toyuto)

where all coefficients are continuous functions.

a) If u has compact support, then Lu has compact support. Since, by assumption, the

coefficients of L are continuous, Lu is bounded, hence M}* is square integrable.

Obviously, M}* is F; measurable. Let us establish the martingale property. For this

we fix s < ¢. Then
B (M"|F.) = B (u(Xt)—u(Xo)—_/OtLu(Xr)dr|3"S)
" (u(Xt) S u(Xy) - [StLu(Xr)dr|SFs)
Fu(Xs) - u(Xo) - fosLu(Xr)dr
_E (u(Xt) —u(X,) - fOH Lu(Xy.s) dr | S"S) £ MY
Magkov X (u(Xt_s) ~u(Xo) - fo o Lu(Xr)dr) + MY,

property

Observe that Tiu(y) = EY u(X}) is the semigroup associated with the Markov process.
Then

EY (u(Xt_s) —u(Xo) - fo o Lu(Xr)dr)
~Tisuly) —u() - B (Lu(X) ) -

by Lemma 7.10, see also Theorem 7.21. This shows that E* (M,;“ | ff"s) = MY, and we

are done.
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Fix R > 0, z € R?, and pick a smooth cut-off function y = yr € C°(R?) such that
xIB(z,R) = 1. Then for all f € €*(R%) we have yf € C2(R?) and it is not hard to see

that the calculation in part a) still holds for such functions.

Set 7 =75 =inf{t >0 : |X; —z| > R}. This is a stopping time and we have

FOXT) = x(X)) F(X]) = (XXT).
Moreover,
L(xf) = % Zaijaiaj(Xf) + sz’@;(xf) +exf
7,5 i
= % > aii (f0:0;x + x0:0; f + O;xO; f + 0, f0;x) + Z bi(fOix + XOif) + exf

@] %

=XLf + fLx + ), aij0ix0; f - exf

1,3
where we used the symmetry a;; = aj; in the last step.
This calculation shows that L(xf) = Lf on B(z, R).

By optional stopping and part a) we know that (MtXf Ft)ts0 is a martingale. More-

ATR’

over, we get for s <t

E* (Mtjj\TR ‘?3) =E” (Mt)g\J:'R ‘SFS)
— MXf

SATR

- M/

SATR*

Since (7r)g is a localizing sequence, we are done.

A diffusion operator L satisfies that ¢ = 0. Thus, the calculation for L(xf) in part
b) shows that

L(u¢) —uLp - pLu = a;j0;ud;¢ = Vu(z) - a(z) Vé(z).
ij

This proves the second equality in the formula of the problem.

For the first we note that d{(M", M?); = d]\ftud]\lgj (by the definition of the bracket

process) and the latter we can calculate with the rules for It6 differentials. We have
dX) =Y 0(X;)dBY +b;(X,) dt
k
and, by Ito6’s formula,
du(Xy) = > dju(Xe) dX] + dt-terms = > 9ju(Xy)o i (Xy) dBf + dt-terms.
J gk
By definition,
AM;* = du(Xy) - Lu(X;) dt = " 9u(Xy)ojx (X)) dBY + dt-terms.

ak

157



R.L. Schilling, L. Partzsch: Brownian Motion

Thus, using that all terms containing (dt)? and dBFdt are zero, we get

thu th¢ = Z Z aju(Xt)al¢(Xt)Ujk(Xt)o'lm(Xt) dBtk dBZn

7,k lm
=2 >0 0ju(X) (Xt ) 0 (Xt ) 01m (Xt ) Sk
7.klm
= Zaju(Xt)61¢(Xt) Zajk(Xt)Ulk(Xt) dt
7,0 k
= > 0u(X) Do ( Xy )ayy dt
7,0

= Vu(Xy) - a( X)) Vo(Xy)

where aj; = Yp, 05 (Xt) o1 (Xt) = (00") 1. (x-y denotes the Euclidean scalar product
and V = (61, cee ,6d)T.)
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